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R SIGNIFICANCE AND EXPLANATION

}
~ . In certain régimes, the propagation of small-amplitude long-wavelength

; s'irface water waves in a horizontal and uniform channel may be approximately

1 \ descril ed by the Korteweg-de Vries equation. When actual comparisons of

solutions of this model equation are made with data gathered in the laboratory

or the field, initial and boundary conditions are necessarily appended. Such
comparisons have generally been made using the pure initial-value problem.

That is, the wave profile is supposed specified everywhere in space at a given

1 instant of time, and the subsequent evolution of the waves is predicted on the
basis of the Korteweg~de Vries equation.
In fact, the measurements typically and most accurately obtained in a
o laboratory are temporal traces of the wave, taken at fixed locations down the
channel. Thus, observations are made of the waves'’ passage at fixed places

along the channel. Measurements so taken must then be converted into initial

data if the pure initial-value problem is to apply. The procedure for such a
conversion is ad hoc, and has recently been called into question as both
) ? unnecessary and inaccgrate (cf. Bona, Pritchard and Scott, 1981). These
authors suggest that a certain initial- and boundary-value problem is a more

suitable model for typical experimental configurations. 1Indeed, they carry

out a detailed comparison of the predictions of an alternative model equation

: with laboratory data, using the aforementioned initial- and boundary=-value

problem.
The major accomplishment of the present report is to show that the

relevant initial- and boundary-value problem, posed for the Korteweg-~de Vries
equation, has a satisfactory theory of existence and uniqueness of smooth

solutions. This sets the stage, in principle, for a more direct testing of

the Kortewey-de Vries model than has heretofore been attempted. rjf n =
ccession For
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THE KORTEWEG-de VRIES EQUATION, POSED IN A QUARTER PLANE

*
Jerry Bona' ana Raygnar Winther

1. INTRODUCTION
The Korteweg-de Vries equation, originally suggested in connection with a certain

regime of surface water waves, has been derived as a model for unidirectional propagation

of small-amplitude long waves in a number of physlcal systemg, BRBecause of the range of its

potential application, and because of its very interesting mathematical properties, this
equation has been the object of prolific study in the last few years. These studies have
generally concentrated on aspects of the pure initial-value problem,
u tu, tun, tu = g, {(t.1)
u(x,0) = £(x), (1.2)
for x ¢ R and t ? 0, say. Equation (1.1) is a version of the Korteweg-de Vries
equation in which the dependent and independent variables are non-dimensional, but
unscaled. The initial data ¢ in (1.2) typlcally decays to zero at infinity, or is taken
to be a periodic function, though these do not exhaust the theory thus far existent (cf.
Bona & Schonbek (7], and Menikoff (20]). For comprehensive descriptions of results
pertaining to the KdV equation, as (1.1) will be named subsequently, the reader may consult
the review articles of Benjamin [3), Jeffrey and Kakutani {14}, Lax (17}, Miura (21,22] and
Scott, Chu and McLaughlin (24].
The applicability of the KAV equation in a particular context depends on many

factors. Among the more universal of these is that the waves he unidirectional and

essentially one-dimensional in character. It must generally be the case that, at least

locally, the nonlinear and dispersive terms, uu, and LN represent small corrections

to the hasic one~way propagator a, +u o= 0 (cf. (4], §2). 1In attempting to assess the

'Dcpartment of Mathematics, The University of Chicago, Chicago, Illinecis
60637,
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Sponsored by the United States Army under Contract No. NAAG29-80-C-0041. This
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'( performance of the XdV equation as a model for waves in a particular system, the pure

initial-value problem may not be particularly convenient. There might be difficulty

associated with determining the entire wave profile accurately at a given instaant of

time. One method of obtaining unidirectional waves to test the appurtenance of X4V is to

generate waves at one end of a homogeneous stretch of the medium in question and to allow

them to propagate into the initially undisturbed medium beyond the wavemaker (cf. figure

- 1). During the time when the waves propagate freely, it may be expected that KAV can

apply. Of course any real medium will have finite extent, and once the waves have been

i
1 influenced by another boundary, the experiment should cease, as far as KAV is concerned.

In such an experiment it may be comparatively easy to measure the passage of the generated

. waves at a fixed location at or away from the wavemaker., If this ls the cige, the

" generated waves can be determined, at or near the wavemaker, and at another station further

away from the wavemaker. One could imagine using the measurement nearest the wavemaker as

data for the KdV equation. It may then be possible to predict, perhape numerically, the

behavior of the waves further from the wavemaker on the basis of the KAV equation, and to

compare the prediction with the measurements made well away from the wavemaker.

The major accomplishment of the theory presented here is the demonstration that the

.f program, just described, can, in principle, be carried out. Let ua agree to fix the zero

of the spatial coordinate x, which i{s along the direction of propagation, at the station

. nearest the wavemaker where a measurement is to be taken. Then the mathematical problem

that accompanies the above discussion is expressed as the following initial- and boundary-

2
A value problem (cf. again figure 1),

u +u tun, +u =0, for x,t » 0,

X X RXX

u{x,0) = f(x), for x ? 0,

u{(0,t) = g(t), for t ? 0.

According to the above general discussion, it could be warranted to take £ Z 0 and to

assume that g, which is determined experimentally, is consistent with small-amplitude

long-wavelength waves. These assumptions will play no role i{n the theocy developed here.

-2~
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“ All that will be required is that f and g exhibit smoothness, which is entirely

appropriate to the use of KAV as a model equation, and that £ decay to zero at infinity

' appropriately. The smoothness requirement extends to the origin, and results in a certain
compatibility that must be satisfied hetween £ and g. These conditions will be spelled
out presently.

The same initial- and boundary-value problem has been analyzed for the alternative

N equation, proposed by Peregrine {23] and Benjamin, et. al. (4],

4

‘ u + o, +uw, -u L, = 0, (1.4)
l

3 in [S}. Results related to those established in the latter reference will be derived and
';; used in the attack on (1.3). The connection between K4dV and (1.4) is a regqularized version

of problem (3.3), namely,

. v tu bua tu - e“xxt =0, for x,t >0,
i . u(x,0) = £(x), for x>0, (1.5)
t u(0,t) = g{t), for t >0, .
where € > 0. The regularized problem {1.5) intervenes in a substantial way in the y

\ existence theory for (1.3) developed here. The regularized differential equation appearing
in (1.5) is the same tool used already in [7) and [8] in discussions of various pure

initial-value problems for KAV. The general outline of the theory herein is patterned

- after that developed in (8)}. The technical difficulties presented by the non-homogeneous
g.ﬁ boundary condition u(0,t) = g{t), for ¢ ? 0, require a more delicate analysis than that

effected in the last-quoted reference.
The present theory may be congidered an extension of the earlier work of Ton [27] and

Bona and Heard (6]. Ton's paper undertook the study of the problem,

u +ue tu 0, x,t >0,
u{x,0) = £(x}, x 20, (1.6)
u(0,t) = 0, t >0, ‘

If the minug sign appears in front of the dAlspersive term, then the extra houndary

condition ux(O,t) =0, for t 20, is appended. For problem (1,6), with the positive
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sign taken, the methods exemplified in Lions' text [18), combined with the reqularization
used by Temam [26], in an early paper on the periodic initial-value problem for Kdv, are
used to obtain global existence of weak solutions and local existence of classical
solutions. (The interval of existence is proportional to the inverse of |£|G, in the
notation to be introduced in section 2.)

Actually, problem (1.6) is not an appropriate model for water waves in a uniform
channel, as is suggested in [27]. For the differential equation in (1.6) is written in
travelling coordinates, and consequently the houndary condition, if it is to correspond to
observations of the disturbance at a fixed position in the channel, should be applied, not
at (0,t), for t » 0, bhut rather at (-t,t), for t ? 0. This awkwardness is easily
obfigcated by the inclusion of the extra linear term Uy in the differential equation, an
addition without serious consequence as regards Ton's mathematical proofs. A moxe serious
objection to the theory developed in [27] is that the homogeneous boundary condition

u(0,t) = 0, for t ? 0, is not well-sujted to model waves generated by a wavemaker at one

end of a uniform stretch of medium, as already explained. Moreover, for problems of long-
wave propagation, it is not anticipated that the flow will develop singularities, and
consequently, it is expected that the model equation should have a global theory of
classical solutions, corresponding to suitably smooth data. These drawbacks in the earlier
theory are here shown to be methodological, and not inherently a property of the model
equation.

In {6}, a local existence theory for (1.3) is developed, using the methods of Kato
[16). The boundary data is required to be mildly smooth, but otherwise arbitrary. For
technical reasons, this theory has not, thus far, yielded solutions defined globally in
time.

It is worth drawing attention to several comparisons which have been made with
experimentally obtained data, pertaining to the originally conceived application of the Kav
equation to small-amplitude surface water waves. We cite the studies of Zabusky and Galvin
(31] and Hammack and Sequr (13}, and of Hammack (12] using equation (1.4). These studies

all used pure init{al-value problems for their theoretical predictions, even though the

-5-
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experimental configuration was exactly as described earlier, in justifying the further
study of the initial- and boundary-value problem considered here. That is, a uniform
channel of water, initially at rest, had waves generated at one end by a wavemaker. The
waves propagated down the channel and their passage was recorded at various stations along
the channel. Entailed in each of these studies was a transformation of data measured over
time, at a fixed location, to data measured spatially at a fixed instant of time. The
approximate transformations used in the above~guoted studies introduce errors, which can be
analyzed. In fact, the forthcoming work [10} addresses this issue in some detail, and
congequently it is not taken up here, except to report that quite significant errors,
particularly as regards the phase speed, can be expected when using the approach of
converting the boundary-value problem to a pure initial-value problem.

It is also worth noting that, at least for surface water waves, damping effects need
to be considered. Such effects were introduced, in an ad hoc way, in (12] and (13}, and
more systematically in {10]. An additional term that models the damping due to the
boundary layers on the bottom and sides of a uniform channel of shallow water has been
derived carefully by Kakutani and Matsuuchi [15] at the level of approximation entailed in
the KAV equation. The incorporation of such dissipative terms in the initial- and
boundary-value problem (1.3) is under study, but will not be addressed here.

The paper is organized as follows. Section two sets out the notation and terminology
to be used subsequently and presents a sample of the main results in the paper. In section
three, the reqularized problem (1.5) is considered, and is shown to admit a satisfactory
theory, when € i3 fixed and positive. A griori €-independent bounds for solutions of
the regularized problem are derived in gections four and five. Passage to the limit

€+0 is effected in section 6, where smooth solutions of the initial- and boundary-

value problem (1.3) are shown to exist, The paper concludes with some commentary

concerning aspects not covered in the present study.
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2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

For an arbitrary Banach space X, the associated norm will be denoted l'lx. The

following spaces will intervene in the subsequent analysis.

R ST

If 9 is a bounded domain in R®, then Cj(ﬁ) denotes the space of real-valued

functions which have classical derivatives up to order j in &, and whose derivatives, up

to order j, extend to a continuous function on . If 3§ =0, co(ﬁ) will be denoted
simply c(f). The norm on c(ﬁ) is

(B = sup |£(x)|,

. ch ~ °%8
and the norm on cj(ﬁ) is

Ty = 5 % 5 (2.1

<
Cj(n) lal<; c(ity

fal = a1 + vee ¢ an,

where a = (01,"',0n) is a multi-index of non-negative integers,

e —— e

and

la}
a 9 "'f(x)
(%) = 3 o

3x1 sen axn
1 n

The notation Bi for 37/3x" and 3: for 3°/3t¥ will be employed throughout when it is

convenient. If & is unbounded, Cg(ﬁ) is defined exactly as in the case that § is

bounded except that the function and its derivatives are required to be bounded. The norm

is again defined by (2.1).
- .
The space ¢ () = n c?(f) will be used, but its usual Frechet-space topology will

o
not be needed, D() is the subspace of ¢ () of functions with compact support in Q.

Its dual space, D'(1), is the subspace of Schwartz distributions on R.

1€ ® is open in R?, then Cj(ﬂ) is the continuous real-valued functions defined on

Q and possessing classical derivatives up to order J which are continuous on 2. wNo

restrictions are placed on the hehavior of the functions near the boundary of 2. This

class can also be given a natural Frechet~space topology, but this topology will not figure

o
in the developments here. Naturally, C () = nj cj(ﬂ).




If T > 0, we will systematically use the abbreviation C(0,T) for <C((0,T]).
Similarly, C™(0,T) will stand for C™([0,T)). .
For any real p in the range [1,%), LP(Q) denotes the collection of real-valued

Lebesque measurable pth-pouer absolutely integrable functions defined on §. Aas usual, '

LQ(Q) denotes the essentially bounded real-valued functions defined on 3, These spaces
get their usual norms,

] = {J 1200 1Pax} VP,
' Py @
for 1t € p < *, and
] I£l = essential aupremum |f(x)|.
y L () x €8

s If 1 €p<® and m >0 is an integer, let W'P(2) be the Sobolev space of LP()-
Zunctions whose distributional derivatives up to order m also lie in Lp(ﬂ). The norm on

WPy s

1£4P = 7 %P
wUP)  lafdm LP(a)

when p = 2, W'P(2) will be denoted H™(R). This is a Hilbert space, and
' HO(Q) = Lz(ﬂ). For 8 > 0, not necessarily an integer, HS(D) is defined by
interpolation. For s > 0, H:(Q) is the closure in Hs(ﬂ) of D(®). For s > 0,

H-s(ﬂ) is the dual of H;(ﬂ) with respect to the pairing which is the extension by
continuity of the usual Lz(Q)-inner product. The non-integer order Sobolev spaces only
intrude at one point in our analysis, and then only in the interest of sharpness. Details
3 concerning these spaces may be found in Lions & Magenes' work {19] or in Stein's text (25},
for example. The notation HQ(Q) = nj Hj(ﬂ) will be used for the Cw-functionc on &,
all of whose derivatives lie in LZ(Q).
ﬁ Finally, H:oc(ﬂ) is the set of real-valued functions £ defined on £ such that,
' for each v ¢ D(N), vf € Hs(ﬂ). This space is equipped with the weakest topology such that
all nf the mappings f * v€, for ¢ ¢ D(Q), are continuous from H:oc(ﬂ) into s
3 Hs(ﬂ). With this topology, H:oc(ﬂ) is a Frechet space (cf. Treves [28)). Let R

denote the positive real numbers, (0,%®). A simple, but pertinent example of the localized ‘

~8-
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+
Sobolev spaces is Hioc(k )}« Interpreting the foregoing definitions in this special case

+
ge H:oc(l ) if and only if g ¢ H%(0,T), for all finite T > 0. Moreover, g * g

+
in Hioc(n ) if and only if qn * g in H2(0,T), for each T > 0. Here and below, the

abbreviation H%(0,T) has been used for H®*((0,T)).
In the analysis of the quarter-plane problem (1.3), the spaces H% () will occur

often, with s a positive integer and § = R or Q= (0,T). Recause of their frequent

occurence, it is convenient to ahbreviate their norms. Thus let

ftel = 001 and |°| = fel . (2.2a)
ws (") s, T u®¢0, 7
If s = 0, the subscript will be omitted altogether. So
fel = 1o} and || = }°} . (2.2b)
LZ(R+) T 0,T

Some special cases of the Sobolev embedding theorems will he used occasionally and are
worth recalling here. Let I be an open interval on the real line, not necessarily
bounded., If g > D§+ m, where m is a non-negative integer, then

B e cp(D, (2.3)
algebraically, and continuously with respect to the norms on these two spaces. (More
precisely, an element in H%(I) is, after possible modification on a set of Lebesgue
measure zero, a c®-function on I, all of whose derivatives up to order m are uniformly
continuous on I, and so may be extended to I In the special case where I = ®" ana
3 = k, a positive integer, its also useful to recall that if f ¢ Hk(l'), then,

£, £, 00, e ) 20, as x b, (2.4)
An inequality that will find use is the following, valid for € ¢ H‘(l+). According to
(2.3), such a function is bounded and continuous on R+, and furthermore,

er < Goenigeny 2, (2.5)

cb(n )

This inequality, which is sharp in fact, follows from the nbservation that, for any vy ¢

R', ana £ ¢ n'(rRY),

’ 1
fz(y) = -zf' £V (x)aAx € Z(f-fz(x)dx e [Tre oo 2ax) 2
y Y Y

< 20flitgert,

-9-




4 Spaces will be needed to describe the evolution in time of the spatial structure.

b If X 1is a Banach space, 1 € p € ®, and -2 <Ca¢b <> then .P(a,b1X) denotes the

e space of measurable functions u:(a,b) * X whose norms are pth-power integrable (essen-

tially bounded, if p = @), These are Banach spaces in their own right, with the norms
Iyl = (fblu(t)li dt)llp , for p <=,
tP(a,biX) a

and

1

- Y = esgential euppremum(lu(t)lx} .

! L (a,b1X) t ¢ (a,b)

N w

p] The subspace of L (a,byX) of continuous and bounded functions wu:{a,b] * X is denoted

Cpia,bsX}. (In case a and b are both finite, the subscript b, for "bounded”, is

iropped.)

! These spaces all possess localized versions. The only one appearing here is the space
L:oc(i”x’ of measurable maps u:i+ + X which are essentially bounded on any compact

subset of i’ .

Finally, if X is still an arbitrary Banach space, we may consider the X-valued

distributions D'(a,b;X) on the interval (a,b). Formally, 0U'(a,b;X) is the set of

&
linear and continuous maps of UD(a,b) into X. If T ¢ D'(a,b;X), its distributional
* darivative is defined by
* 4T, .
) Ez(v) = =-T(p'),
for ¢ ¢ Dia,b). Thus, if £ ¢ Lp(a,byx), then f may be viewed as an X-valued
-y distribution via the definition
e £o) = [Pecerectrat,
o a
&
A for ¢ . D(a,b). The integral is, of course, X-valued, and converges since ¢ has compact

support. thwus, "temporal” derivatives of LP(a,b;X)-functions may always be defined, at
least in the distributional sense. There is a considerable theory pertaining to when
distributional derivatives are in fact classically defined. Some of these results will be
called upon later. Specific uses of this theory will be referenced precisely, but the

reader may consult {18}, [19), [25) or ([2B] for general commentary concerning such {ssues.

~10-
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The following is a special case of the main result of this paper. 1t serves

simultaneously to give orientation and define the gnals of the paper.

THEOREM, Consider the initial- and houndary~value problem (1.3) and suppose that the

2

+
loc(l )« Suppose that f and g satisfy the

data f,qg has f e #3(m*) and gec H
compatibility conditions,
g(0) = £(0)

and

gp{0) = ~(f . (0) + £(0)E_(0) + £ (0)).
o +
Then there exists a unique solution u in Lloc(n+;H4(l )) of (1.3) corresponding to the

data f and gq.

Remarks. By the term “solution", we will always mean, in the first instance, a

solution in the sense of distributions on the quarter plane. The term classical solution

is reserved for a function which is continuous and continuously differentiable the
requisite number of times, and which satisfies the differential equation pointwise
everywhere, and the initial and the boundary condition pointwise.
2 + 1 4 4
Note that since g ¢ Hloc(l ), ge ¢ (0,T), for any T > 0., Also, f ¢ H (R)
=+
jmplies f ¢ c:(n )« 1In consequence, the compatibility conditions are both well-~defined.
The first compatibility condition simply expresses the continuity of the solution u at
the origin. The second condition would necesgarily hold for a classical solution.
The theorem above is a part of theorem 6.2 below. There it will also be established
: + +
that if £ ¢ 2PN RYY and g« H:o;(n ), where % 1is a positive integer, and if
corresponlingly higher order compatibility conditions hold, then the solution u liesg in
+  3k+1 _+

a
the class Lloc(k IH (R )). 1In particular, if k ? 2, it is easily inferred that u

s a classical and ginbhal solution of the quarter-plane prohlem for the KAV equation.

i,




3. THEORY RELATING TO THE REGULARIZED PROBLEM.
In this section, interest will be focused entirely on the regularized initial- and

boundary-value problem (1.5), repeated here for convenience.

u tu tuu tu - tuxxt -0, for x,t 2 0, {3.1a)
with
u(x,0) = f(x), for x? 0,
(3.1b)
u(0,t) = g(t), for t 2 0.
For consistency, the restriction,
u(0,0) = £(0) = g(0), (3.2)

will be imposed throughout the discussion. For the present, the positive parameter €

will be treated as a fixed constant, in the range (0,1), say. Following the development

in [8), let

3/2

/2(x-t),€ t). (3.3)

vix,t) = Eu(€1

It is immediately verified that u is a smooth solution of (3.1) if and only if v 1is a

smooth solution of the problem

v, + (1+e)vx + W Vet ™ 0, in ﬁ, (3.4a)
and
vix,0) = F(x), for x 20,
(3.4b)
vit,t) = G(t), for t 2 0.

Here O = {(x,t) : £t >0 and x > t}, F(x) = Cf(€1/2x), and G(t) = Eq(ﬁa/zt)- The

dependence of F and G on € is suppressed, since € 1is viewed as fixed here. Of
course (3.2) implies and is implied by

F(0) = G(0). (3.5)
The initial- and boundary-value problem (3.4) is somewhat peculiar, owing to the domain (a

sector of angle *%/4) in which it is posed (cf. Figure 2).

Kb DLy, W G
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Figure 2

The reqularized problem, after the change of variables.

Related initial- and boundary-value problems have been analyzed by passing to an

associated integral equation. This method proves to be effective in the present

circumstances.

To convert (3.4) into an integral equation, proceed formally as follows. Write (3.4)

Vv - - € -
t T Vixt (1+ )vx V!

and, for fixed x > t, integrate this relation over the temporal interval (0,t). There

appears

L s, for x> ¢t, (3.6)

where

w(x,t) = v(x,t) - F(x) and S(x,t) = = ft[(1+s)vx(x,s) + v(x,a)vx(x,a)}ds.
0

The solution of (3.6) may be expressed in the form

wix,t) = ae X+ [° e ¥lg (e, erat, (3.7)
t

by the variation of constants formula, Of course a = a{t} and it has been assumed

13-
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tacitly that S and w are bounded. If ¢t 2 0, then at x = t,

G{t) - F(t) = v(t,t) = F(t) = wit,t)

= a(t)e t + 1/2f° e'lt'HS(E,t)dE.
t

Hence,
a(t) = et{o(t) - F(t) =% f. e"t'“s(i,t)del. (3.8)
The result of (3.7) and (3.8) is that N
vixee) = Fx) + ¢ (g(e) - Feed)

L AP PY RS PT T al R T3
t t

Since § 2 t, this simplifies to

vix,t) = F(x) + e gty - ree)) + [7 Mix-t,E-t)s(E,0)aE, (3.9)
t
where
M(y.z) =V lexp(-ly-2z]) - exp(-(y+z))]. (3.10)

Replacing S by its definition in terms of v, and integrating once by parts, (3.10) may
be expressed in the form

vix,t) = F{x) + e-(x-t)

(G(t) = F(t))
(3.11)
+ 7 kx-t,E=t) [EL(1+€)v(E,8) + Yy vP(E,8)])dsat,
where : °
Kiy,z) =V, [exp(-y-z) + sgn{y-z)exp(-|y~z|)]. (3.12)

The boundary term that appears in the integration by parts vanishes because e-!x-El -

eI en £ et and x 2 t. Notice that X(0,E-t) E 0, so that v(t,t) = G(t),
for ail t 2 D. Note also that v(x,0) = F(x), provided the consistency condition (3.5)
holds.

Equation (3.11) is the desired integral equation. It has been derived formally, and

thus far its relation to solutions of (3.4) is not rigorously established. Our object now

is to make a rigorous connection between solutions of the integral equation and solutions

=14~
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of {3.,4), and to show that the integral equations possesses solutions, at least for small
time intervals.
Turning to the second objective first, let T > 0 and let CT be the Banach space

of bounded continuous functions defined on the closure of the get

ﬂT = {(x,t) : t €(0,7) and x > t}.

CT is equipped with the supremum norm. Let A denote the operator that maps a function
w € CT into the function
(W) (x,t) = F(x) + & %) gre) - pie))

(3.13)
+ 7 xx-t,6ot) [SrO+0)w(Em) + You?(E,8)] andE,
t 0
defined for (x,t) € nT' Because the kernel X is integrable, and assuming that F
and G are bounded and continuous, it is plain that Aw ¢ CT also. Existence of a
solution of the integral equation (3.11) will be provided by showing that, for T small
enough, A 1is a contraction mapping of a ball centered at the zero function in CT' The

following estimate is the basis on which this assertion is established.

Let u and w be elements of CT' Consider the difference of their images under the

operator A,
Au(x,t) = Aw(x,t)
- fax(x-t,E-t) [Frase + Yo u(E, ) +VywiE,8)] [ulk,8) - wi§,a)]dedE.
t 0

For t fixed in the interval (O0,T},

sup lAu(x,t) - Awix,t)| €
x>t

sup | IKix=t,E-t)1aE + sup [Fl1+e + Ypu(k,s) + Vo wi&,8) ! lulk,a) - wiE,s)|ds.
xt t £ 0

But, for x ? t,

€ B, MLy Moo




| i

' 4

. {

{ ;

’ ;
K

' f.lx(x-t.E-t)ldE = 1/2f. |.2t-(x+5) + sqn(x-E)e-lx-E'ldE

t t
™
N - vbjﬁ|.2t-(x+€) _ ex-eldE + y&!x (.Zt-(x+E) . ee-x)dE .
x t

) -1 - ez(t-x) <1

1

f Hence, as 0 €t < 7T,

{ sup lAu(x,t) = Aw(x,t)] < sup [S114€ + Yo u(E,8) + Vow(E,8) ] u(E,8)-w(E,8)|ds

1 2

: x>t Ex o i

{ .

: Sriive + Vo (tul, + hl, )lg-wl, i
CT CT CT ;
-1 It follows that
- IAu-AwIC =  gup fau(x,t) - Aw(x,t)]- 1
. T (x,t)efd :

+ T g

't (3.14)

< ri(14e) + Y5 (lul, + dwl, )] luewl, .

: C'r C'r C',r

. This inequality implies the desired result. Let 8(x,t) 2 0 and set

e R(T) = 21A81, < 4iF) + 2lg) . (3.15)

. T Cy(R) c(o,T)
~:f - <

. Let B, {w e Cot lwlcr R(T)} and 1let
iy @(T) = T{1+e + R(T)]. (3.16)
= i
oo Then it follows straightforwardly that, for u and w in Bg,

fau - Awlc < GXT)lu-wlc R
T T
and
lAulc < lau - Aelc + IAeIC
T T T

<O by + Yy RIT)
T

< UM + YR,




t = s o L e R TR AN

" 4
Because of the last two inequalities, A will be a contraction mapping of BT if

: ‘ O(T) €V . Referring to (3.16), one appraciates immediately that, for fixed data F

: and G, this certainly holds for T sufficiently small. In fact, it is worth noting that,

essentially because of the inequality in (3.15), for any M > 0 we may take

(3.17)

1
T= miﬂ[ M, 211#8 + 4'?' + 2]GT } },
! cb(n ) C(0,™)

and have GXT) <B§. Thus (3.11) has a solution in (g, for T sufficiently small.

% This result is summarized formally in the following.

PROPOSITION 3.1, Let M > 0, G ¢ C(0O,M) and F ¢ Cb(i+) with F(0) = G(0). Then

there exists a positive constant

.. T =7 (IRl , 161 )
° 0 cb(i") c(0,M)
E such that for any T' with 0 ¢ 7' € min(To,M), there is a solution of (3.11) in CT"

Moreover, for any T ¢ (0,M}, there is at most one solution of (3.11) in CT'

: Proof. The question of existence has already been settled. Suppose there are two

distinct solutions v and w of (3.11) in CT. Since v and w are continuous, there

is a t4 € {0,T) such that v S w on Rt , and on no domain ﬂt is this still true, if

. E 0
t Y t > to. Let U(x,t) = vix,t) = wix,t), in ﬁt . Define
% 0
X
U (X/t) = Fix) + o (" a(e) - vien
“

y t
i + 7 xixet, Bty [0 [(1+e)0(E, ) + Y0P (£, 8)]d8dE,
¥ t 0

for (x,t) ¢ D = {(x,t)u:o <t €T and x > t}. Plainly Uy is bounded and continuous

)

q(

on N. Then the integral equation

-17-
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u(x,t) = Uy(x,t) + I.K(x-t,E-t) ft [(1+&)u(E,8) + B&uz(i,s)]dsdE

t to

= Au(x,t),

defined on D, has two distinct solutions, which we denote by v and w again, though

they are in fact v and w restricted to D. Moreover, while these two solutions agree

at t,, they do not agree identically in any neighborhood of tge
The existence arqument presented above is easily adapted to show that, for R large
enough and for t, = t4(R) near enough to toe ; is a contraction mapping of the ball

BR of radius R centered at the zero function in cb(°1" where

D, = {(x,t) : tq <t «< t, and x > tl).

But if

R > max{dl,6 , twl },
CT CT

then A has two distinct fixed points v and w in Sg. This contradiction forces the

conclusion v 2w on QT, and the proposition is established.

It will be important in subsequent sections to have smooth solutions, up to the
boundaries, of the regularized problem (3.1) at our disposal. This amounts to the program
of relating solutions of the integral equation (3.11) to solutions of the transformed

problem (3.4). The following result will be sufficient for our later needs.

PROPOSITION 3.2. Suppose that F «¢ c';(i*) and G ¢ C™(0,Ty), where k > 2,

m 21, and k > m. Suppose algso F(0) = G(0). Let v be a solution in (p of the

integral equation (3.11), where 0 < T € To. Then

3i32v €Cp for 0€3Sm and 0 <1< ks (3.18)
Moreover, v is a classical solution of the transformed problem (3.4) in ﬁT. Conversely,
if v lies in CT and is a classical solution of (3.4) on ﬁT, then v 1is a solution of

the inteqgral equation (3.11) over ﬂT, and so v satisfies (3.18).

=18~
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. Remark The partial derivatives in (3.18) may be defined at the boundary of OT by
b
the obvious one-sided differential quotients. The reader will appreciate that a function
S
. v defined on QT doces not possess a classically defined partial derivative with respect
to t at the point (0,0). In case j > 0 in (3.18), the condition 3132v € C& connotes
' that this partial derivative exists classically in nT \ {(0,0)}, is bounded and
; continuous there, and that it may be extended continuously to nT'
i
; proof. First note that if F ¢ C;(i+) and G ¢ C™(0,T), where k ® m, then
b
! volx,t) = F(x) + e ¥et(Git) - F(t) (3.19)
s 13
: has axatvo € CT' for 0 €4i <k and 0 % 3j <m. Also, since v ¢Cp,, then
) Jex,t) = [ErO+e)vin,s) + Yo vi(x,8)1ds (3.20)
." 0
. has I, € CT‘ A short calculation using leibniz' rule confirms that
, v (x,t) = 3tv°(x,t) - K(x=-t,0)J(t,t) + ratlx(x-t,ﬁ-t)]J(E.t)dE
. t
+ f-x(x-t,E-t)Jt(E,t)dE.
t
X = : Simplifying,
-{x- -(x+
* vt(x,t) = 3tv°(x,t) -e (x t)J(t.t) + Iﬁgzt (x E)J(E,t)di
] t
" (3.21)
: + [0 ROzt E003 (5,008,
- t
. E Thus Ve € CT’
(P
' By dividing the range of spatial integration at £ = x, it is readily seen that
b A
N4 v, ¢ (;r and that
f vx(x't) = axvo(x’t) + K_(x-t,x-t)J(x,t) - K*(x-t,x-t)J(x-t)
3 (3.22)
J‘. + [Lix-t,E-£)3(E, 0148,
a : t

where
Liy,2) = - ¥ {exp(~|y-z|) + exp(-y-z)},
A Y
! (3023,

Kt(x-t,x-t) = 1lim X(x=-t,E-t),
£ %t
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and £ * x+ means &£ ¥+ x while &£ * x- means £ t x., Thus it appears that

v (k,t) = 3 v (k) + J(x,t) + {' Lix-t,E~t)3(E,t)a8. (3.24)
Since k ? 2, axvo may be differentiated with respect to x. Moreover, since v, eCT,
J({x,t) may be differentiated with respect to x. And, the integral on the right side of
(3.24) may be differentiated with respect to x. Performing the indicated differentia-

tions, we see that

v__(x,t) = 33y (x,8) + 3 (x,8) + [ K(x=t,E=t)I(E, )4k, (3.25)
%X x 0 x t
This representation shows plainly that Vo eCT. Formula (3.25) may be simplified by use

of the original integral equation. Thus,

v (xt) = 3:vo(x,t) + 3 (x,E) 4 (V(R,E) = v (x,t))

= Jx(x,t) + vix,t) + ?xx(x) - F(x) (3.26)

= gt((1+€)vx(x.s) + v(x,8)v (x,8)]ds + v(x,t) + F_(x) - F(x).

It is now clear that Vix is differentiable with respect to t, and that

vxxt(x't) - (1+€)vx(x,t) + V(x,t)vx(x,t) + vt(x,t).

So, {f k22 and m 1, any solution v in CT of the integral eguation (3.11) is a
classical solution, up to the boundary, of the transformed differential equation (3.4a).
As already remarked, a continuous solution of (3.11) has v(t,t) = G(t), for 0 €t < T,
and has v(x,0) = F(x), for x ?» 0, provided the consistency condition F(0) = G(0)
holds.

Further regularity of a CT—solution of the integral equation may be established by
similar arguments. As this issue is important in our subsequent investigation, a little

more detail is warranted.

First, if m > 2, then since Vy € Cr, it follows that every term on the right-hand

side of (3.21) is differentiable with respect to t. Moreover, each of these derivatives

lies in CT' as is easily verified. So Veg € CT. This argument may now be iterated, with

the conclusion that azv € CT' for 0 < 3§ < m.

=20~

PP N O e b




A similar argument, based on (3.26), may be used to show that 3iv € CT' for
0 < i <k, Specifically,

2+ L
3x zv(x.t) = 3:v(x,t) + 3:+2F(x) - er(x)

(3.27)
+ IF 32*1((1+5)V(x,!)-F»&Vz(X'l)1dl:
for L =0,1,°%¢,k=2. °
Since v, € Cp, it follows from (3.24) that v, € Cp and that
v (x,e) = 3.3 v (x,8) + 3, (x,8) + & FEla(e,¢)
xt tx0 t
(3.28)

+ [uixt, E-03, (5,088 - (T2 5g, e,
t t

Finally, by using the differential equation, the results already derived, and
induction, mixed partial derivatives of the form aiagv, where j 21 and 1 ? 2, are
seen to lie in G, provided that j €m and i € ktj.

1f, on the other hand, v is a bounded classical solution of the differential
equation (3.4a) which satisfies the boundary conditions (3.4b), then necessarily F(0)=
G(0) because v is continucus at the origin. Moreover, in this case, each step of the
formal construction leading from (3.1) to (3.4) is easily validated. In consequence, Vv
is seen to satisfy (3.11). Hence by the argument just elucidated, pertaining to solutions
of the integral equation (3.11), v satisfies the conditions of regularity in (3.18).

This concludes the proof of the proposition.

In our subsequent analysis, it will be convenient to have at our disposal smooth
solutions of (3.1) which are not confined to i+x[0,T] where T is small. This
corresponds to providing smooth solutions of (3.4) on ﬂT,, where T' is given. It seems
natural to iterate the local result propounded in proposition 1, This will be effective as
soon as an a Ezlorl bound on the L.-norm of a solution defined on ﬁT is provided. More

precisely, suppose a classical solution v of (3.4), defined on nT for some T > 0, is
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in hand. And suppose the boundary data G is defined at least on [O,Tol, where To >

T+« Consider a new initial- and boundary-value problem,

for (x,t) such that

+ +€ - -
v “ )"x T Vaxt o t T and x 2 ¢,
with (3.29)
wix,T) = v(x,T), for x > T,
wit,t) = G(t), for t > T.

The initial value of w 1is the terminal value of v. Just as for (3.4), (3.29) may be
converted to an integral equation, which in all aspects is similar to (3.11). A solution
to this integral equation may be inferted to exist on some domain of the form

{(x,t): T <t €T+ 47 ana x > tl,
Provided v and G are smooth enough, the solution w of the integral equation will
provide a classical solution of (3.29). 1In this manner, v is extended to a solution of

(3.4) on nT+AT' As in proposition 1, a lower bound for the size of AT depends on the

L -norm of the data in (3.29). Specifically referring to (3.17),

1

-T, 1] Y 1 }.
0 211'0'6 + 4hy( IT)_ch(T'Q) + 216 C(TITO)J

AT > min{T

Suppose it was known that, for the given data F and G, any solution v of (3.4) definred

on nT' for some T € To, has the property that

vt & <c=c(r ,F,G).
b( T) 0
Then a lower hound on AT can be imputed, and in consequence, after a finite number of
steps, the solution may be extended to nT +« This conclusion is worth stating formally.
0
-+

PROPOSITION 3.3. Let TO > 0 be given, and G ¢ cm(o,mo), F e C:(l ) with F(D) =
G(0), where k 2 2, m » 1 and k ? ms Suppose there is a constant C, dependent on Ty
F and G, such that for any sclution w of (3.4) defined on nT' where T € 7T_,

0

U <c. (3.30) 4

wl
cb(ﬁ,r)
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Then there exists a unique solution ve CTO to (3.11), which 18 also a classical solution
of (3.4) and which satisfies the conditions of regularity expressed in (3.18). Moreover,
v is defined locally as the fixed-point of a contraction mapping of the type in (3.13), by

iterating the result of propeosition 3.1 a finite number of times.

' Provision of the relevant a priori bound is now considered. To this end, the

following technical lemma is useful.

1.
LEMMA 3.4. Let F ¢ Ch(R) and G € C™0,T,) with F(0) = G(0), where k 1,
; 1 m>1 and k >m. Let v be a solution of (3.4) in CTO. Let 0 € p € k and suppose
* - that
aiF(x) + 0, as x * +=, (3.31)
for 0 € j € p. Then,
dalvi,t) 0, a8 x v, (3.32)
) uniformly for 0 € t € To, for i,j such that 0 € i €m and 0 € j € p+i.
e
. Proof. Suppose it is determined that v(x,t) * 0 as x * +°, uniformly for
; 0 <S¢t < TO. Since v 1is a classical solution of (3.4) on nTo' it satisfies the
f : integral equation (3.11) on nT « Referring to formula (3.21) for v, it is clear that
? vt(x,t) +0 as x * +%, unifgrmly for 0 € ¢ € To. If m > 1, then upon
i‘ differentiating (3.21} with respect to t and using the fact that v and v tend to
3': 0 at +%®, it is straightforwardly assured that vtt(x,t) +0 as x * ®, uniformly for
&l
;,‘ 0 <t < TO. Continuing inductively, it follows that
ﬁ 3iv(x,t) *0 as x * +%,
;ii for 0 € i€ m, uniformiy for 0 € t € Ty
a Next, by considering formula (3.22), we see that if p > 0, then vx(x,t) + 0 as
1, x * +®, uniformly for 0 € t € To. Then from (3.28), vxt(x,t) *0 as x * +@,
;t? uniformly for 0 € t € TO. From the differential equation (3.4a), it is seen that
v t(x,t) + 0, as x * +®, yniformly for 0 € t € To. Continuing in the pattern of the
- proof of proposition 3.2 leads to the conclusion that (3.32) holds.
& -23-
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The above analysis was all predicated on the desired result holding good for v
itself. The lemma will therefore be established as soon as it is confirmed that (3.32)
holds for i = j = 0.

For T > 0, let Cg be the closed subspace of CT composed of those elements which
converge to 0 at +®, uniformly for 0 € t € T, If F(x) * D, as x * +*, then
operators of the type exhibhited in (3.13) map C: into itself. Because a solution v of
(3.4) is provided in CTO' the uniqueness result of proposition 3.1 implies that condition
(3.30) holds. So v 13 obtained locally as a fixed-point of a contraction mapping of the
form in (3.13). This fixed-point may be determined by iterating the operator on the zero
function 0. The sequence {vn}:=1 thus generated (v1 = a8 and Voey = AV, fou
n? 1) lies in C: and converges to v in CT’ Therefore v € Qg. As a finite number

of such steps are needed to recover v on ﬁT , it follows that v ¢ Cg . This concludes
0 0

the proof of the lemma.

Attention is now turned fully toward derivation of a priori information oconcerning
smooth solutions of (3.4) which imply (3.30). A bound that will suffice is the subject of
the next proposition. The same hound will also be needed in section 4. Because of this,
it is especially convenient to derive the bound in the context of (3.1). Of course the
reader will realize that the theory, thus far developed for (3.4), implies the existence of
smooth solutions of the reqularized problem (3.1), at least locally in time. This is
simply a matter of tracing the inverse of the transformation (3.3) which led from (3.1} to
(3.4). The precise result is spelled out in theorem 3.8. For now, it is simply assumed

that a classical solution of (3.1) is in hand.

-4+
PROPOSITION 3.5. Let f ¢ ci(n ), g € c’(o,'r), where f£(0) = g(0), and suppose
-+
0 <e€€1, Let u be a classical solution of (3.1), up to the boundary, on R x[0,T].
+
Suppose in addition that £ ¢ H'(R*). Then for all t € [0,T), u(*,t) € u ().

Moreover, there are positive constants a, and a,,

(74 ] 1/2| [
ag = a Ifl + €2 0f .|q|1,T)

and
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31 - l1( 4 ‘.|q|1'T).
~, depending continuously on their arguments, such that,
fa(+,t) ¥ < a, (3.33)
and
2 2 2
fu(s, ) V) + gt(ux(o,-) + (u (0,8) - eu (0,8))"1d8 € &, (3.34)
. for 0 €t <T ., These inequalities hold uniformly for € 4in (0,1].
i) Remark. While not stated explictly here or later, the varioue constants that appear
in the development of our theory generally depend on T. Besides a direct dependence on
: T, a; and a,; also depend indirectly on T via the H‘(O,T)-norm of g, |g|1'T. The
4 reader will quickly perceive that a, and a, may be presumed to depend monotonically
. on T, for given £ and g. 1In fact, a, and a, may be assumed to depend monotonically
on their arguments generally, but this will not be needed here.
Before proving the proposition, the following corollary result is stated. This is the
result of central interest for the present section.
.
- -+
COROLLARY 3.6, Let F ¢ cg(n ) anda G ec'(0,T,) with F(0) = G(0). Suppose in
addition that F ¢ H'(n’). Then there exigts a constant C, dependent on lFl1 and the
,i H‘(O,To)-norm of G, such that any classical solution v of (3,.,4) defined on nT' for
2
e TC<T, ,6 satisfies

0

! .
Yoy €

-
Proof, Let v be a classical solution of (3.4) on ﬁT' for some T < TO' The

inverse of the change of variables (3.3) is

V2 32, V2, (3.35)

wixet) = € we™ V2 4 ¢

Then u 1s a classical solution of (3.1a) on R X(0,T'], where T' = e-s/zr, which

satisfies the auxiliary conditions (3.16) where
£y = € e %) ana git) = €772y, (3.36)
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Here € > 0 is fixed, and so f and g satisfy the hypotheses of proposition 3.5. Hence

the H‘(lf)—norm of u is bounded on [0,T'] by a constant that depends on If1I

1!
, of g, say. Here, T} = €3/2T . Because of the basic
1,T° 0 0

inequality (2.1), it follows that u 1is bounded on i*x[o,r'1 by a constant C dependent

and on

the H1(0,T6)-norm lgl

only on lf'1 and Igl1 i In particular, C does not depend on T' for T' in the
1[4

[}
range {O,Tal.

But, v is defined from u via the transformation (3.3). Hence the desired result

follows, and the corollary is established.

Proof. (of proposition 3.5.) First note that since £ ¢ C;(i*) n H‘(l’), f(x), £'(x),
f*(x) * 0 as x * +*® (cf. [9]). Let v be defined from u as in (3.3). Then by lemma
3.4, aiBZv(x,t) * 0, as x * +®, uniformly for 0 €t €T, for 0 € j € 1 and

0 €4i €2+ . Because u is recovered from v by (3.35), 3:3:u(x,t) + 0, as x* +>,

uniformly for 0€ ¢t €T, for ¥ and V with u+ v €2, Thus u, Uyr Uy Vs Uy and

u,, tend to zero at +*, uniformly for o< t < T,

Let U{x,t) = g(t)e‘x and w=u - U, There igs a constant ¢, such that, for
0 <t <T,
fu(e,t)lf < fg(t)| < C.lgl1',r.
So to prove (3.33), it is enough to establish a similar estimate for w. Now w satisfies

the initial- and boundary-value problem

-4
- Py - x .
we + v + we + W xx ewxxt "4 (wU)xp in R x[0,T}, (3.37)
where ¥ = =(U + U + UU + U - EU ), and
t x X XXX XXt

-X =+

w(x,0) = f(x) - g(0)e ~, for x € R,
(3.38)

w(0,t) = 0, for t ¢(0,T].

Multiply (3.37) by 2w and integrate the resulting expression over (0,M)X(0,t). There

appears, after integrations by parts, and using the auxiliary conditions (3.38),
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4
fM[wz(x,t) + Swz(x,t)idx + fth(O,s)da = f“(wz(x,O) + sz(X.O))dx
x x x
0 0 0
ft 2 2 .3 2
+ [~w (M,8)= 3 w (M,8)=2w(M,s8)w__(M,8)+w_(M,s8)+2€w(M,s)w__(M,s) (3.39)
0 3 XX x xt
t
- wz(H,s)U(M,s)]ds + 2 f fM P(x,8)w(x,8)dxds -~ ft f“ Ux(x,a)vz(x,s)dxds-
: 0 0 0 0
) Because U(x,t) = g(t)e™®, it follows that
'U. . IU [ ] < lg' <c |g| .
- ~ -
o (Kxpo,m) % c (®x0,m) cto, 1T
d.
and similarly, since € € 1,
2
To(e,t)1 € 2{g" ()| + 2lg(t)] + g7 (),
i so that
2
J MoZix,eraxds € c (lgl, ),
. 0o o ! 1T
for all (M,t) ¢ R x{0,T}. If
M
: , woie) = M wlix,e) + ewi(x,t)jdx,
- M b x
and if hM denotes the supremum, over [0,T], of the second integral on the right-hand side
-‘ -
st of (3.39), then the inequality,
t
<
. W (e) € W0) + ny + Co(lgly ) ¢+ eglal, o g W,(8)ds,
. emerges. Gronwall's lemma implies
- C.t|g|1 -
‘ ’
W lE) € (W (0) + by + c,(lgl,'T)le ’
. +
] for 0 €t €T, Reference to (3.38) will convince the reader that w(°*,0) € H’(l )e So
-
Q\ Wyl0) is bounded, as M * +®, In fact,
h w (o) > [wiix,00 + ewl(x,0)1ax = W(0),
Py M 0 x
\ as M * +4®, S'nce u and a, tend to zero as x * +%, uniformly for 0 € t € T, so also
"
& do w and w.. It follows that hM *0 as M * +%, Hence,
—_— <-‘.'1‘lql1 T
1im W (t) € {(W(0) + c_(iqgl, e .
¥ yow M 1 1,T

! for all t - {0,T). Thus for each t ¢ (0,7}, w(*,t) ¢ H (R'), ana

Wt < c (IEl & 218 1
w C, (el + e20e ,Iqll'T).
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for any € in (0,1]. This is the desired bound on the Lz(l’)-norm of w, and so (3.33) is

shown to be valid.

Now multiply the regularized equation (3.1a) by the combination 2tuxt - 2uxx - u2
and integrate the resulting relation over l+'(0,t). After integrations by parts, in which
the fact that u and various of its derivatives vanish at +® is used repeatedly, it is

verified that
(eey[Tulix,rax + [E 200,00 + wi(s)1ae = (1+6) T2 (xyax - + [Te3 (x)ax
x x x 3
0 0 0 0
(3.40)
s 3 [Dmtriax s [Fiag’e + Cq:(s)ld. - 2 [fq (s)u_(0,8)a8, ]
0

0 [}
where

2
H(s) = uxx(o,s) - €u  (0,8) + % 9 (s).

Elementary inequalities, including (2.5), show that,

f u3(x.t)dx < lu(°.t)l2lu(',t)l < "2 lu(°.t)ls/zlu (~.t)l'/2
- X
0 Cp (R}

St 000 ¢ toge,e1'3,

Putting together (3.40), the last observation, and the already established (3.33) yields,

lux(-,t)l2 + [Fradi0, + wiarias < 2a;°/3

+ 2014e0ig 12
x
0
- % [oaax + 2 [5- % (s + (1+€)q:(s)1ds,
0 0
where 4, 1is the constant on the right of (3.33). Inequality (3.34) now follows, and the

proposition is proved.

oy LA

A theorem of global existence of solutions of (3.1) and (3.4) is now in view. TIts
statement is postponed until after examination of one other aspect, of importance in the

analysis in sections 4 and 5. This aspect is embodied in the next proposition. ’
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4 PROPOSITION 3.7. Let F e Chii) n H(®') and G ¢ C(0,T), with F(0) = G(0),
k23, m?>1tand k >m. Let v be the solution of (3.4) defined in C,. Then there
- exists a constant C such that, for each t ¢ (0,7}, !
wiavie,nr <c, ("
L% ((t,™))
- provided that 0 € j € m and 0 € i € k+j,
i Proof. Throughout the demonstration, C will denote various constants, which are
) independent of t in (0,T}. It will be convenient to introduce another condition,
, denoted (')1, which, for a function w defined on ﬂT, amounts to the requirement that
-4 w(*,t) € H‘((t.‘)) for t € [0,T}, and that
. b(e,e)0 <c, ("4
H ((t,®)
independently of t in [0O0,T].
According to (3.33) and (3.34) in lemma 3.5, (*)1 holds for v itgelf, Thus v
e and v, satisfy (*). For one-dimensional domains, H1 is an algebra, so that products
M of H' functions are again in ', Thus (1+e)v + v? satisfies (*),. Hence if, as
) * before,
: J(x,t) = ({t[(Ht)V(x,s) + Yy vd(x,s)1ds, ﬂ
,gj then J satisfies (')1. So J and Jt satiafy (*)1. It then follows from formula
; ; (3.21) that Ve satisfies (‘)‘ as well, This obgervation may be used inductively to
E ; show that 3tv satisfies (*),, for 0 €< 4i < m,




-

Turning now to spatial derivatives, since %k > 1 formula (3.24) shows that vy
satisfies (')1. This means in particular that I satisfies (*),. Since k > 2,

then F . ¢ H’(lf), 80, by reference to (3.26), one seeés that v satisfies (‘)1.

xx
Proceeding inductively, and using (3.27), it follows that aiv satisfies (')1 if
J < k-1, and so a;v satisfies (*).

From (3.28), Ve 18 observed to satisfy (*),. The differential equation (3.4a)
shows that Viext satisfies (')1. Using the differential equation, the results already in
hand, and induction, mixed partial derivatives of the form aiagv , where 3 > 1 and

i > 2, are seen to satisfy (*), when j <m and { < k+j-1. Hence aiaZv satisfies
{(*) provided that 0 < 3 <m and 0 < i < k*j. The desired results are now all

established.

It is worth summarizing the accomplishments of the present section. As the
transformed problem (3.4) is only of transient interest, the theory is recapitulated in
terms of the regularized problem (3.1). Thus the results stated now are consequences of

the established propositions and the tranaformation (3.35) taking (3.4) to (3.1).

THEOREM 3.8, let € >0 and T > 0 be given., Suppose f € Cg(i+) and g €
c™0,T) with £(0) = g(0), k >3, m > 1, and k > m. Then there exists T, > 0 and a
unigue function u in cb(i’x[o,roj) which is a classical solution of the initial- and
boundary-value problem (3.1) corresponding to the given f and g. Additionally,

i.3 =+
axatu € Cb(l x{0,T)), (3.41)
for £ and 3 euch that 0 < j<m, O0<4i <k, and i+j < k. Moreover, if f ¢
W (m*), where r » 1, then u may be extended to a solution of (3.1) on i+x[0,T]. In
that case, there is a constant C such that, for 0 <t < T,
1 adace,en <o,

for 4 and j such that 0 ¢ J < min{r,m}, 0 <1 <r, and i+j < r.
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A8 a corollary to this theorem, the following result emerges. It is this corollary

which will find explicit use in the upcoming sections.

COROLLARY 3.9. Lat € > 0 be given. Let £ ¢ H (R') and g € C (R'), with f£(0) =
g(0). Then there exists a unique solution u of (3.1), defined on the quarter-plane
i"i‘ which is bounded on finite time intervals and which corresponds to the data ¢
and g. Moreover, u ¢ c.(i’xi‘) and, for each k 2 0,
aaly e i, (3.42)

for all 4,§ > 0.

Proof. The existence of global solutions follows immediately from the theorem and the
uniqueness result. Also, for any 4,3 20, kX >0, and T> 0, w= 3i33u is bounded
uniformly in Hk(l*), for 0 <t <7,

It remains only to check that the mapping ¢t * w(°,t) is continuous, from [0,T]

K, oF - k _+ o k, _+
to H (R ). But, in fact, ue¢ L (0,TjH (R )) and nte L (0,KR (R ). It follows
immediately (cf. {19)) that u ¢ C(O,Ttﬂk(l+)). The corollary is now verified.
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4. ESTIMATES IN HJ(I’) FOR THE REGULARIZED PROBLEM
The purpose of this and the next sectlon is to derive a priori bounds, which do not

depend on €, for solutions of the regularized initial- and boundary-value problem,

X -+
nt + u, + ua + uxxx - e“xxt = 0, in R X[0,T], (4.12)
and
-+
u(x,0) = £(x), for Xx ¢R,
(4.1b)
u(G,t) = g(t), for t €][0,T].

Here, T 1is a fixed positive real number, and the aspired-for bounds will hold
independently of t in [0,T].
® 4 L]

Throughout this section it will be assumed that f ¢ H (R ), g ¢ H (0,T), and £(0)
= g(0)s In consequence of corollary 3.9, for any €& in (0,1], there is a classical
solution u = v, of (4.1) which is such that

® oy
u € C (R X[0,T]),
and, for integers 3,k 2 0,
k, _+
adu e clo, 1 .
Some preliminary relations, established via energy arguments, will be derived in a sequence
of technical lemmas. These prefatory results will be combined to obtain €-independent
bounds for u within the function class C(O,T1H3(R+)) and for u, within the function
1, .+
class C(0,T;H (R )).

As a start on this program, recall that from proposition 3.5, there is a constant

a,, depending only on Ifl and |9|1,T' such that, independently of € in (0,1},

1
. 2 2 - 2
bu(e, 0002 + It[ux(o,s) + (v, (0,8) - eu, (0,5))°]as < a

) (4.2)
0 1
for all t in [0,T]. So, from (2.5) it follows that
|“|2 . <2 gup {lu (*, ) u(*, )8} < a,, (4.3)
Cb(n x[0,T}) 0€¢<

and, because of the differential equation (4.1a),




({t(ux

o (0r8) - Cuxxt(o,s))zds - £t<gt(s) +u (0,8) + g(s)ux(o,s))zds

(4.4)
Com= el
clif 1:|9|1'T)o

for all ¢t in [0,T].

If u 4is the solution of (4.1) and t ¢ [0,T], define

2 2 2
AC(t) = sup {Mu(+,s)12 + ely (+,8)1}
0<att 3 AXXX

2 2 2 2 2 2
+ gt[uxxxx(o,s) + uxxx(o,s) + uxx(o.s) + € uxt(o,s) + Cuxxt(O,s)lds,

and

tht) =  gup lut(',s)l? + ft u2 (0,8)ds.
o Xt

0€<g<t
It will be shown that A(t) and B(t) are bounded on [0,T], independently of € small

enough. The first step in obtaining this result is the following Hz(l+)-eatimate.

o 0
LEMMA 4.1, Let T >0, f ¢ H (l*), g ¢ H (0,T), with f£(0) = g(08). There exist
pogsitive constants c,, a, and Cys where

1/
€ ‘1( £ 1"9'1,1)' 3 ‘2( fl2 * & "xxx "9|1,'r)'

1
c, = c1(lf 1'|g|1,T)'

such that the solutjon u of (4.1) corresponding to the data f and g satisfies

2 2 2 2
|u('.t)l2 + ft[uxxx(O,l) + uxx(o,s) + €

2
. uxt(o,s)]dl

2 18
< s, + € gt A“(s)B(s)ds - 5 {t uxx(o,s)uxt(ﬂ,s)ds,

provided that ¢ ¢ [0,T] and € € (0,€11.

it died"ac




Remark. The presence of the lagt term on the right-hand side of the above inequality
means that this estimate is not directly effective in bounding |u(',t)|2, independently
of €,

Proof. For each t in [0,T], define V(t) as

9 2 2 14 9 2
- - 3E - .
V(t) = f.[(5 3 u)uxx 3uux + -u + geu Jdx

0 4 XXX

Multiply (4.1a) by u3 - 3ui, differentiate (4.1a) once with respect to x and multiply
the result by -Guux - %2 Yo’ add the two equations thus obtained, and integrate their

+
sum over R X(0,t). After several integrations by parts, there appears,

9 2 2
V() - v(0) + 3 gt[uxxx(o") + ul (0,8))as

14 15 2 3 9 2 2
gt[zv () + 59 (s) - Bq(a)ux(o,s) + g (s)uxx(o.s) -39 (S)ux(O.s)

6 2 3
'69(')“:(0")“xxx(°") + gq(s)uxx(o,s) v

XN

(0,8)u__(0,8)
XX

(4.5)

18
- g-uxx(O.!)uxt(O,s)lds

+ € ftlsqt(s)ux(O,a)uxx(O,s) + 69(’)“x(°")“xxt(°") - Jui(o.s)uxt(o,S)
0

3 ¢ 2
- g’ (s)u  (0,8))ds + € [ f.[3ux u

2
+ - .
3 <t Gutuxuxxx 3u uxuxt]dxds

Because of the relation (4.2), the first seven boundary terms on the right-hand side of

(4.5) can be bounded in terms of the data f and g and a suitable small multiple of the

two boundary integrals on the left-hand side of (4.5). Using (2.5) and (4.2), it follows

that for any 6 > 0,
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ftui(o,s)uxx(o,n)ds < luxl —+ (ftu:(o,!)dl ftu:x(o,-)ds)
0 C (R x[{o,t}) 0 0

1 ) )
<V {sup (lu (*8)] 2 (8} 2y([*2(0,0)88 [*a2 (0,81a0) 72
n<g<t 0 0

3

< a15-3 + 8{ aup luxx(°,s)l2 + ftu:x(O,s)dt}.

0<g<t 0

Since
[ (8)u_(0,8)u _(0,8)ds < lu I Ya
0 % x5 Txxt '

t 2
- g 1. (JTuZ (0,8)a8)
x ch(n*x[o,cl) ET o X

a similar bound holds for the term
€ {‘gtmuxw,-)uu(o,sm.

The estimate (4.2) also implies that

e2 gtuit(O,s)ds < 2{ gt(uxx(O,l) - euxt(o,s))zds + {tu:x(o,lid-}

<2a +2 [fu? (0,s)as.
0 XX

A8 a consequence, bounds similar to that in (4.6) obtain for the terms
€ ftuz(o,a)u (0,8)ds and € ftgs(s)u (0,s8)ds.
o X xt Pt xt
Making use of (4.4), the term,
€ gtq(s)ux(O,a)uxxt(o,s)ds.
may be bounded in the same way.
Still relying on (4.2) and (4.3), the term

-3 f.uuidx €3l f.uidx
] Cp(R X[0,t]) O

<3 az/z.

=3h=

(4.6)




Hence,

3/2

9 2
- - <
l (5 3€u)uxxdx v(t) + 331

0

1/2

12 on & x{0,7]. Congsequently, if

But, by (4.3), lul does not exceed the value a

-V
€, = (253 ) 2, then for 0 < € € €,
6 2 3/2
2 <
3 g'uxxdx vit) + 3a)%,
for all t in [0,T].

Therefore, if (4.5) and a suitable multiple of (4.2) are summed, and use is made of
the above estimates, then for t in [0,T] and € in (0,51],

2 2 2 2 2
fa(e, 008 + gt(uxxx(o,a) + w2 (0,8) + hul (0,8)1d8

18 2
- S gtuxx(o,e)uxt(o,s)ds + € gt g.[auxxut + 6uxuxxx“

2
< - : R
‘2 + 3u uxuxt,dxds
Here, the constant a, stems from Vv{(0) and from the various combinations of a, that
appear in the foregoing estimates. The desired result now follows from the last relation,

(4.2), and the definitions of A(t) and B(t).

The eatimate of the Hz(l’)-norm of the solution u of (4.1) given in lemma 4.1 will

be used in determining the following bound for A(t).

® 4 @
LEMMA 4.2, let T > 0, fe€eH(R) g €H (0,T), with £(0) = g(0). There exist
positive constants a, and Sy s where
T Y2 [ 11
3y = ayllely e N 19l ) and oy = UM Hgl,
such that the solution of (4.1) corresponding to f and g satisfies
1

Az(t) - €c2[A3(t) + 9(1*A2(t))52(t)] < a, + € /5c2 fthz(s)s(s)ds,

0
for all ¢ in {0,T] and € 4in (0,€.).

Remark. The €_ appearing in the above statement is that derived already in lemma
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As in the proof of the last lerma, the desired result will be obtained from a

Proof.

technical "energy” argument. In the proof, various constants dependent on aspects of the

data f and g will appear. These will generally be denoted simply by ¢, and this

symbol's occurence in different formulae is not taken to connote the same constant.

Define, for each t in {0,T],

108 2 2 36 2
wie) = golsg—(euxxxx * uxxx) i (w = suxx)uxx

+ 6(u2 + Cuz ) - lus - 3€u4 - 2§-+=mxz }dx.
X xx 5 x S AKX

Multiply (4.1a) by 12uu: - %ﬁuix - u‘, differentiate (4.%a) once with respect to x and

multiply this by 12u2ux, differentiate (4.1a) twice with respect to x and multiply this

216 72
by = 35 Yoexx ~ 5 Myx’ add the three resulting equations and integrate their sum over

l+l(0,t). After many integrations by parts with respect to the spatial variable x, there

appears,

108 2 2
Wit) - W(0) + 3—5-‘{‘[\:““(0,5) + u, (0,8))ds

36 2 2 2 15 16
- gtt- LgisruZ (0,8) + 65°(s)u2(0,8) - 39°(8) - 75°(5)

- g'(e)tu_(0,8) = €u_(0,8)) + 83 (s)u’(0,8) + 12g°(s)u (0,8)(u__(0,8)
- €u___(0,8)) =12g(8)u’(0,8)(u_ (0,8)) - €u_ (0,8)) + 3u"(0,8)
xxt ' 9 x ! xx' ' xt x !

66 2 2 72
-9 (s)uxx(o,s) + g-ux(o,s)uxx(o,s)(uxxx(o,a) - E“xxt

(0,8))

144

(O.e)uxxxm.s)(uxx(o,ﬂ - euxt(O.s)) - E'“x(o")“xx(o”)“xxx(o") (4.7)

1]
wiv
(8]

x

144 2 72 36 3
+ ;g-g(s)uxxx(o,s) - g—g(e)uxx(o,s)uxxxx(o.a) - gguxx(O.s)
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216 72
- sg-“xxx(ols)“xxt(ols) + g‘ﬁg(s)uxx(ﬁ,s)uxxxt(0,8)1ds

5

3
+ € + +
gt g~[4u uxuxt 24““xuxx“xt 5 xx“xxxuxt

~

« 22 u u_, + 12uu u? - 38, % laxds.
5 Tx xxxx xt t xx S

First note that, because of (4.2), there is a positive constant c, depending on

Ifl1 and |g|1'T, so that

108 . 2 . 2 32_.3
35 ('uxxx( Y el“xxxx( L) 15 T €A (L) € Wit) + ¢,

for all t in [0,T). Also, in consequence of (2.,1) and (4.2), there is another constant

c, depending again on |f|1 and lgl, 5, such that, for any §> o0,
’

luxl2 " < 2{ sup (Hu ('.s)lluxx('.S)l)}
c, (R x(0,£]) oss<t ¥
(4.8)
~1 2
<c6 ' + 8{ sup M (°,s)I°},
p<gsr ¥
By an analogous argument,
.“xx' s < c5_3 + 6{ sup lux x(’,s)lz}. (4.9)
Cp{R %[0,t]) 0<gst X

Taken together with (4.2), these estimates imply that there is a constant ¢, depending on

lfl1 and |gly, g, such that for all §> o0,

2 t 2 V.
ft u (0,8)u_ (0,8)u__(0,s)ds < Ky ¥ [ ftu (0,8)ds [“u (O,S)ds] 2
0 x XX XXX XX Cb(n+x[0'tl , 0 X 0 XXX
<c8d . ftuzx (0,s)ds) + 8{ sup luxxx(',s)lzl. (4.10)
o X% 0<gst

By adding (4.7) and a suitable positive multiple & = a( sup 'u(',s)|1) of the inequality
0<g<t
stated in lemma 4.1, and using (4.2) and (4.3), bounds similar to those exhibited in (4.10)
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may be shown to hold for all the boundary terms on the right-hand side of (4.7) except for
the last three. Choosing S appropriately, it may thus be inferred that, for all € in

(0,€.), and for all t in [0,T],

3(ad(e) - € /tuixt(o,a)ds] - %3€A3(t)
0
~ ~ W 2 t 36 3 216
< /2 -
3, + C,e gta (s)B(s)ds g (339, (0.8 + S50, (0,8)u,_ (0,8) (4.11)

7 18
- Segtara (0,800, (0,8) + T (0,800, (0,8)]ds.

-~

a (IEd
Here a3 = a3( £ 3

To complete the proof of the lemma, it suffices to control suitably the boundary terms

1/ ~ -~
2 ] - 1 ] .
+ €, 'fxxxx "‘”2,1-’ and ¢, = c,(It 1"9'1,'1')

appearing on the right side of inequality (4.11). To this end, observe first that (4.,2)

and (4.9) imply

3 2 t
ftu (0,8)ds € fu | f la_ (0,s){ds
0 ** e (W xpo,e1) 0
<ty #? [f(lu__(0,8) = €u_ (0,8)] + €lu_ (0,8)|)ds
X% xx xt xt ' (4.12)

-+
Cb(R x[0,t]) O

< o873 ¢ e + 28?0y,
for any & > 0, where the constant c depends on 't'1. IQII,T and T. Next note that
equation (4.1a) implies

t
- g uxxx(O,s)uxxt(O,s)ds

t
- g [9,(8) + u (0,8) + g(8)u (0,8) - €u  (0,8)ju _ (0,8)ds.

Integration by parts in the temporal variable yields
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{t[qt(s) +u (0,8) + g(s)u, (0,8)]u_, (0,8)ds

s=t

= 'g,(8) + u (0,8) + g(s)u (0,8)]u  (0,8)] _4

t
- g (g, (8) + u  (0,8) + g (s)u (0,8) + g(s)u (0,8)]u,_(0,8)ds.

From (4.1a) it also follows that
2
uxt(o,s) e“xxxt(o's) [uxx(o,s) + ux(o,s) + g(s)uxx(o,s) + uxxxx(o,s)]. (4.13)
Hence, due to (4.8) and (4.9), for any § > 0 there is a constant Cgr depending on

s, Ifl1 and lgl, . such that

2
- [fu, (0,80 (0,80d8 < o5 - € [Tu (0,8)08

0 0

(4.14)
2
+ §(a%(e) + gtuixxx(o,s)ds] - gt(1+g(s))uxx(o,s)uxxxt(o.s)ds.
Similarly, it follows from (4.8), (4.9) and (4.13) that, fc: any § > O,
2 2
-gtuxx(o,s)uxt(ﬂ,s)ds <o+ Bla(e) + {tuxxxx(o,s)ds]

(4.15)

- € gt uxx(o,s)uxxxt(o,a)ds,

where the constant cs depends on §, Ifl and Igl,'T. Combining (4.15) with (4.11),

1
(4.12) and (4.14), and chooaing & in a perspicuous way, there appears,

a

N 1, »
2a%(t) - 5c2(A3(t) + €01+ A% (enBl(en) < ay + e’2 c, [ta%(e)B(s) a0
]

(4.16)

18 216 288
- g'((g-o « 8% - Bsiarnu_(0,00u (08048,

holding for all € {n (0,81) and t in [0,T]. Here,
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- 1/ Y -~
= [} CREA 1 - £ .
ay = ayiiely + €020 e 9]y o) and oy = o (il gl o)
To estimate the boundary terms on the right-hand side of (4,.16), use (4.9) again to deduce
that, corresponding to any 6 > 0 there is another constant cgr dependent on

§, 121 ana |gl1’T, such that

1

18 216 288
-€ gt{(g—ﬂ + 3;') - sg-q(l)luxx(o,l)uxxxt(o.l)dl

-1, 18 . 216, . 288 2 2
< LA ———
S+ 55 *+ 35 90, gt“xx‘°"’d' + Se gt“xxxt(o")d' (4.17)
2 2.t 2
Scg+ (e + 8¢ ({t“xxxt(o")d"

$o, the only term still presenting difficulty is the final one in (4.17). To estimate
this guantity, differentiate the reqularized equation (4.1a) twice with respect to x,
multiply the result by 2t:uxxxt and integrate over n’x(a,t). The effect of these

operations is to produce the relation,

2 2 2 2
] . - . (]
elha (o, 0)0° = tu_ (o)1) + € gtu L (0/8)ds
2 2 2
- e} ¥ - ) 4
{ fxxx fxxxx e t':(j;tuxxt:w")" (4.18)

€ - 2€ .
+ 2 gt“xxxx(o")uxxxt(o'.)ds 2 gt g-(uux,xxuxxxthd.

The last integral on the right-hand side of (4.18) seema somewhat awkward. However, after

integration by parts,

-dl~
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&

:
1%
-

F
0

°

t
+
(“ux)xxuxxxt dxds = g g.(Suxuxx uuxxx)uxxxtdxds

- 1 2 = s=t
g.lléu(x,s)uxxx(x,l) uxx(x,s)]dxls=0

+ 3[% (0,8) 00 (0,8)u  (0,8) - u_(0,8)u_ (0,8)1ds

o

+ -1 2 .
‘{t ‘{. ( auxxuxxxuxt M 3ux“xxxx“xt /2 uxxxut)d)(d'

Also, by (4.8) there is a constant ¢, dependent on lfl1 and |g|1’T, such that

Eftux(O,s)uxxx(o,u)uxt(o,l)ds < Ezaz(t)lu 1 -
0 c, (R x[0,T]) 0

< ce2(1 + a2(enB2(t) + A% (e).

And,
2
eftux(0,s)uxx(0,s)uxxt(0,s)ds < ely !

0 x cb(i’x[o,cn 0

< cead(e) + a%(e).

Referring to the definition of A and B below (4.4), and applying elementary estimates,

it follows at once that

r' 2
€ + 3 |
2 ({t 0 uuxx“xxx“xt “xuxxxxuxt 72 “xxxut)dxa'

1
< [treea?(s)is) + 6 2% (s)B(s) + €aZ(s)B(s)}ds
0

1
< 13¢ 72 [ta2(g)B(a)ds.
0

2
+ ftuxxx(o,a)da

[5u? (0,8)a8 + € Itu:xt(o,s)ag

0

Here, and above, the restriction € € 1 1is used. The last few relations combine with

(4.18) to produce the inequality
1
52 (0,888 € c + c'c 2 [Fa%(s)R(8)ds
0 XX 0

+ o (a2(e) +ead(e) + e(1eade))n%(en ).

=42~

(4.19)
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If, in (4.17), 0§ is now chosen small enough, the desired inequality follows from (4.16)},

(4417) and (4.19). This completes the proot of lemma 4.2.

To make effective use of lemma 4.2, an estimate for B(t) is needed. The following

result will be sufficient.

L ] L ]
LEMMA 4.3, Let T >0, f ¢ H (R), g € H (0,T), with £(0) = g(0). There are
positive constants a, and C3s with
- ] - ]
8, = atlu (000, lgl, o) and ey = oy (itly, gl o),
such that the solution of (4.1) corresponding to the data f and g satisfies the
inequality

Bie) a4 ey [fL01 s A8))B3(s) + e (a))as,

4 0

for al1 ¢t in ([0,T] and € in (0,1)}.

Proof. Let v(x,t) = ut(x,t). Then v satisfies the variable-coefficient partial
differential equation

vt + vx + (uv)x + vxxx - evxxt =0, (4.20)

holding for (x,t) in i*x(o,rj. Multiply (4.20) by 2v and integrate over l+l(o,t),
where t ¢ [0,T]. Then, it follows that

Wis, 6302 + ety (o031 + [%v3(0,9)a8
X ) X

. 2 . 2 2
= By(*,0)1° + Elvx( O+ gt(1*9(l))9t("d' (4.21)

+2[* g m)iv (0,80 - v (0,m)1a8 - [° i u‘vzdxd..
0 0 o

+
Next, multiply (4.20) by 2(€vx - uv - vxx) and integrate again over R X(0,t). This

t

leads to

-d 3=




e

b o

(1) (o, 618 = [Putx,t)viixatrax + [Fiv3(0,8) + (v (0,8) - ev_ (0,8)) }ds
x 0 0 X xX xt
. (146300 (+,0002 = [Tex)vi(x,00dx + [Fq2 (s)(€ - g (s)]ds
x 0 0 tt
(4.22)

- 2ftqtt(s)vx(0.s)da - 2ftg(s)gt(s)[vxx(0.a) - v, (0,8)]ds
0 0

+ ft f-(Zuvv - va)dxds.
0 0 x
The underlying equation (4.1a) implies that

3 - 2 e
gt g-v dxds gt g.v (ux + uu + U e '“xxt)dxds‘
The last term on the right side of this relation is potentially troublesome, but after

integration by parts,

tft f.vzu dxds = -Sftgz(s)v (0,8)ds - 2€It f-vvzdxds.

xxt t x x
0 0 0 0 0

Also,

f.u(x,t)vz(x,t)dx Cht |v(‘,t)|2
0 Cb(l x[0,t})

<clvie,0) 1%,
where c depends on lfl1 and Iql1 o 88 in (4.3). ‘The desired result thus follows by
[
adding an appropriate multiple of (4.21) to (4.22) and making the kind of estimates based

on (4.2) that are, by now, familiar.

Recapitulating the outcome of lemmas 4.2 and 4.3, if u is the solution of (4.1)
corresponding to initial data £ and boundary data g, and A and B are the associated
functionals defined below (4.4), then A and B are restricted by the system of

inequalities

1
Az(t) - ec2{A3(t) + c(1+52(t))32(t)) < a3 + € /2 c, fthz(e)ﬂ(s)ds:
0
(4.23)
B2t < a, + oy [C101 + aen’(e) + e’ (o) ids,

30
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' 4 holding for all t in [0,T] and € in (0.81]. The constants 61, 84, a4/ Cy and

cy have all been previously determined to depend simply on T, on various norms of £

- and g and on lut(',O)l1. The system (4.23) will be exploited to obtain the following

bound on u, which holds uniformly for € sufficiently small.

LEMMA 4.4. Let T >0, £ € H (R'), g € H (0,T) be given with £(0) = g(0). Let
u be the solution of (4.1) corresponding to the data f and g. There are positive
congtants €, and c¢,, both depending on Ifl , |g| and My (+,0)}_, such that for
2 4 4 2,T t 1
€ in (o,e2] and t in [0,T}, both A(t) and B(t) are no larger than c,.

1 i
]
; Proof. For each M ¢ R such that
;1 M > max(A(0),B(0)), (4.24)
. let
t, = inflt € [0,TI:A(E) > M or B(t) > M},
R with the understanding that if the set over which the infimum is taken is empty, then ty
= T. To establish the lemma, it suffices to show that ¢ty =T for some M and all
T sufficiently small €.
- f Observe that on the interval [0,ty), where M is supposed chosen as above, (4.23) i
* implies that
(1-€c2H(I+€H)]A2(t) Sa, ¢+ E1/2c2 {tAz(s)B(S)d! + cz(€H)2, ]
i (4.25)
82(t) S a, + c, JE(1+n(8))B (8)d8 + €c, ™M,
4 3 0 3
For each M satisfying (4.24), choose € - EZ(M) € (0,min( 35.61)) such that for all ¢
in (0,82),
, 1 - c emireem) 2 Y, cz(en)z <1,
; and (4.26) ;
' c3ETM3 <1, %
'

Further, let A1(t) = 1 ¢+ A(t). Then from (4.25), if follows that for all t in {o,:n)

and for all € in (0.¢2):
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1
Af(t) <6+ da, +dc.€”? f*a2(s)B(s)ds,
3 2 o™

Bz(t) €1+a, +c ftl (s)sz(s)da.
4 3 0 1
Hencae, in this range of t and €, there are positive constants a, B and Y,

independent of M, such that

1
a2(e) ¢ =2 4 2Xe 2 [* A2(5)B(a)da,
1 1-¢ 72 [) 0 1

(4.27)
8%(e) € = + 21 [ (a)8%(a)ds.
1-e 2 9 )

(First choose @ and 8 large enough, and then choose Y 1large enough. Note then that
@, 8 and Y only depend on the constants a,, a4, C, and c,.) Define A, and B to

1
be the maximal solution of the system

2 . __a Y. Vor =2, .=
A1(t) ‘1—_:72* 2'5!: ‘{th](s)n(s)ds.

=2 8 Y = -2
BY(t) = ———py + 2— A (s)B (8)ds.
1-e2 ° t{t !

Then, i‘(t) >A1(c) and B(t) > B(t), for all t for which i1(t) and §(t) are

finite. Moreover, i1 and B may be determined explicitly as,

- a - 8 eYt
A, (t) »m —y—=— and B(t) = ’
! 1-€ /zeYe 1~€ /zeYt
- 1/
whenever exp(Yt) < € 2 Therefore, if M is chosen so that

M > 2max{a, BeYT},

and then ez is chosen so that, as well as satisfying (4.26),

Y _yr
L 82 2e >‘6 ’

then ty = T for all € in (0,52]. Taking c4 > M, the lemma is now established.

The constants €, and ¢, in lemma 4.4 depend on lut('.0)|1, since the constant
a, in lemma 4.3 had such a dependence. In order to control the size of A(t) and B(t),
uniformly for small €, some estimate of lut(',o)l‘I must be obtained in terms of the

data f and g. An appropriate bound {s forthcoming if the data satisfies the additional

-4 6=




compatibility condition,

! gp(0) = ~[£,(0) + £(0)E,(0) + £, (D)), (4.28)

XXX

a» L ]

LEMMA 4.5. Let T >0, f €H (l+). g €H (0,T) with £(0) = g(0). Suppose the
data f and g also satisfy (4.28). Then there is a constant ag depending on lfl4
such that

) lut('.0)|1 < ag,
for all € in (0,1), where u is the solution of (4.1) corresponding to £ and g.

1
; Proof. Let ¢(x) = =[f (x) + £(x)f (x) + £ (x}}. Then “c("O) is a solution of
: the boundary-value problem
‘.i . - . =
ut( ,0) e“xxt( ,0) ?,
i ut(o,o) - gt(O), lit.?t(x'o) = 0,
x
Hence, u (°*,0) is given by
K t 1
: -x/t:‘/2 f’
. u, (x,0) = e g9,(0) + M (x,8)w0(5)ak, (4.29)
’ 0
f where, as in (3.10),
n 1 1 1
M (x,E) = - lexp(-]|x-§]/¢€ 2y - exp(-(x+E) /¢ 24y,
K 2¢€
*-% It follows immediately from this representation that
oy
e,
'.‘ 1/4
>y tu (+,008 € Iy 1g (0)] + chel
) t ! 2 /2 qt ’
A
; where c¢ is a constant which is independent of €. Since gt(O) = ¢(0), and because of
"i ’ the definition of ¥, it is concluded there is a constant a depending on lfl4 such that
;5 'ut(',O)l < a, (4.30)

<

and this relation holds uniformiy for € in (0,1},

-
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pifferentiation of (4.29) with respect to x leads to the relation

1 /2

Y.
1 -x/€ 1 -(x+E) /e 2
u. (%,0) = - —1720 9.(0) + 35z ] e wEras

€ 0

1 (-x+E) /€ ke 1 (x-E)/¢ Y
-3 [ AEYAE + 2= e wE)ac.
0 x

Integrating the right~hand side by parts, there appears the formula

1
x/€ /

1 - 2 o ~
U (00) = =g e [v(0) = g, (0)] + (})’ M(x,E)p (£)6E,  (4.31)

where

-~ 1 1
M_(x,E) = —‘1— [exp(-]1x=-E|/¢€ /2) + exp(-{(x+£)/¢c 72 ).
€ Zt’é

The integral on the right-hand side of (4.31) presents no difficulty. For it is readily

verified that

1 {'Ee(-,zwx(E)dEI <clyt,

where again ¢ denotes a constant independent of € and ¢ . The presumption (4.28) has

the effect of eliminating the other, potentially troublesome term from the right-hand side

of (4.31). Again taking account of the definition of ¢, it follows that there is a

constant a, depending on |£|4, such that

luxt(',O)l < a, (4.32)

holding uniformly for € in (0,1]. Taken together, (4.°0) and (4.32) imply the desired

result.

Combining the imports of lemmas 4.4 and 4.5 leads directly to the principle resuit of

this section.
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THEOREM 4.6, Let T > 0 be given, and let f ¢ H’(l+) and g € HQ(O,T) and suppose
the compatibility conditions,
£(0) = g(0) and g (0) + £, (0) + £(0)E (0) + £, (0) =0,
hold. Let u be the solution of the regqularized initial~ and houndary-value problem (4.1}
corresponding to the given data f and g. Then there is a constant ag, depending on
'tl4 and lglz'T, such that
lu(',t)l3 + lut('.tll1 < a,

for all t in [0,T] and € in (0,62]. Here 82 is the positive constant arising in

lemma 4.4, and so depends on lfl‘ and '9'2,T as well.
Remarks. A somewhat stronger result than is stated in theorem 4.6 is available from
the foregoing analysis. This strengthened result has been eschewed, for simplicity and

because it is not needed in what follows. Nevertheless, it is worth recording that
2 2 2 2 2 2
] . <
ela !t 4 g (U (0e8) + 0 (0,8) + €u  (0,8) + u,(0,8)]ds € (a)

as well, provided that € 1ies in (0,€.] and t 1lies in [0,T]. The constants 62
and ag are those specified in the statement of the last theorem.
The various constants appearing in the statements of results in this section may all

be taken to depend continuously and monotonically on both T and the norms of the data

that occur. This follows immediately upon examination of the presented proofs. Such an

aspect is without crucial significance in what follows, and so will be passed over.




5. HIGHER-ORDER ESTIMATES FOR THE REGULARIZED PROBLEM.

The derivation of €-independent bounds for solutions of the regularized initial- and
boundary-value problem (4.1) is continued in this section. The bounds established in
section 4 would be sufficient to establish an existence theory set in the space

L.(O,T1H4(l‘)) for the quarter-plane problem (1.3). Smoother solutions would be expected
to obtain provided the initial and boundary data is appropriately restricted. A proof of
such further regularity, presented in section 6, is based on the additional estimates to be
obtained in the present section.

The assumption that f € H.(l+), g € H.(O,T), and £(0) = g(0) will continue to be
enforced throughout this section. This hypothesis will be recalled informally by the
stipulation that the data f and g is smooth and compatible. If 3 is a non-negative
integer, the notation

u? . 32u
will be convenient, and employed henceforth. This section consists of two technical
lemmas, which lead directly to the principal goal, theorem 5.3, The first technical result

generalizes lemma 4.4.

U+ o
LEMMA S.1. Let f€¢ H(R) and g € H (0,T) be given, with f£f(0) = g(0). Let u
be the solution of (4.1) corresponding to the data € and g, and let k be a non-

negative integer. There is a constant

by = bl‘l?l , max ('u(j)('.0)'4:'u(j+‘)('.0)'1}),

1 k+2,T 0€4 <k

depending continuously on its arquments, such that

1% (k)

2
. ] +
xxxx‘ st}

2
(-,t)l3 + ey

(k)

2
<
X (0,3)1 }as b,

ft((ui:;(O.S)lz + [u

(k+1)
o X

2
(0,8)]" + E[ux
and

W V0 s Fra M 0,01%s <,
0 x 1
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for all ¢t in {0,T] and € |{in (0,:2]. Here, ez is specified in lemma 4.4.

Proof, First note that for k = 0, the desired result is implied by lemma 4.4. The
proof proceeds by induction on ke Let X > 1 be given, and suppose that the stated

estimates hold for all non-negative integers less than or equal to kx - 1. Let v =

“(k)’ where u is the solution of the regularized initial- and boundary-value problem

{4.1) corresponding to the given smooth and compatible data f and g, For t in

[0,T], define

A%(t) = sup {lv(',nl: + clvm‘x(',-)'z}
0€s¢t

) 2 2
+ ({ [V (008) + v (0,8) + €v.  (0,8)]ds
and

Bz(t) = gup {'vt(.")'i} + ftvit(o,s)ds.
0€ast 0

The induction hypothesis implies that

Tal

el € c
P + ’ [
L (0, T (7))

- 1 _+
L (0,TiH (R ))
and so (5.1)
ut , Wi €c,

Lo, Tty L " x[0,1))

where here, and in the remainder of this proof, ¢ will denote various constants which all

depend on the same variables as the constant h1 given in the statement of the lemma, but

which will always be independent of €.

For any integer 3j ? 1 the function u(j) satisfies the equation

MENIREY (1)
X

N + (uu

(M _
+ hj(u))x + U cuxxt 0, (5.2)

where

3=t -
h, (w) =T, ) (2)u‘l)u(j 4,
3 1=1

The induction hypothesis also implies that

M, (u)? oo

X Cch ‘u)l € c. (S.3)
L (0,T:W

"] L ]

2%=*y) Lo,

=51
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The functions A(t) and B(t) will be estimated via an energy inequality derived from
equation (5.2), Taking j = k , differentiate (5.2) once with respect to x, multiply by

=2v and integrate the resulting expression over R+*(0,t). The outcome of this process

RN
may be written

v, 2 2
vyt + { (v (0,8) + v, (0,8)]ds

= V2(0) - th vxt(o,s)vxx(o,s)da + th gpluv + hk(u)]xxvxxxdxds,
where V., (t) = lv_ (° t)'2 + ey (° t)'2-
2 xx ! xxx' '
Inequalities (5.1) and {5.3) imply that

g‘ g’ [av + h (W] v __dxds € c(1 + gtlv(’,s)lids). (5.5)

Because of (2.1) and (5.1), for any § > 0, there is a constant cg such that for all
t in {O,T].,
vt @ 2,0 4 Scg+ 8 sup IV('13)|§}- (5.6)
L (0,tsW°7 (R)) 0<s<t

Combining (5.1), (5.2), (5.3), and (5.6), it foliows that, for all §>0 and t ¢ [0,T]),

- gtvxt(o,s)vxx(o,s)ds

- gt{"xx‘°'°’ + fuveh (W) (0,8) + v (0,8) - €v . (0,8)}v (0,8)ds

Scg 8{ eup lv(‘,s)li + [t v
0

(0,8)as} - ¢/ __ (0,8)v_ (0,8)as.
O‘B‘t ARXXXK 0 xxxé xx

Together with (5.4) and (5.5) this implies that for all § > 0 there is a constant
Cg such that
2 2
v, (t) + £t[vxx(0,a) + v, (0,8)]d8
(5.7)

€ cglt + [tAZ(s)ds] + 6A2(t) - 2Eftvxxxt(o,a)vxx(O.S)ds.
0 0

-52-
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where A is defined above (5.1).

g

Next, differentiate (5.2), again with 3 = k, twice with respect to x, multiply by

'2vxxxx and integrate over R+N(0,t). After suitable integrations by parts, there appears

2 2
| vyt + ,{t["xxx“’"’ + v (0.8)]as

(5.8}

- V3(0) - 2£tvxxt(o's)vxxx(°'8)ds + th g.[uv+hk(u)lxxxvxxxxdxds,

holding for all t ¢ [0,T}, and where

Ll 2 L] 2
Vg(t) = lvxxx( R3] ™ e'vxxxx( B3
Observe that ;

- +
B [t r(“")xxx xxxxdxds { or(uv RXX + 3“xvxx 3“xxvx M uxxxV)vxxxxdxda

. - - 1 2
(J)"[ /y9(8)v2  (0,8) + 3u (0,8)v, (0,8)v_(0,8) + 3u_(0,8)v (0,8)v  (0,8)

+ uxxx(O,S)V(O,s)vxxx(o,s)]ds

7
f.[—u v +6u v v + 4u v v + ]dxds.
0 27x XX XX XXX XXX X XXX Yexxx xxx

(.4
O\‘

The induction hypothesis and the fact that

’ v (0,00, | as < cffa%(s)as .
. X + !
0 L (R) 0 . -

3
A implies that there is a constant ¢ such that

¥ .
+ Nt f f.u v v dxds € ftlv (81 ha (*,s)flv (°,8)lds
o 0 o XXX x xxx o X LQ(R+) XXX XXX

" < cft Az(s)ds.
N 0

Also, it follows directly from the regularized equation (4.1a) that

3. -
u = Eu(1> - {ua__ + u2 +u o+ u(1)).
XXXX XXX xx x xx x

} Hence, from (5.1) and the induction hypothesis,

t t 2
[t f.uxxxxvvxxxdxdu < g IV(.'S)IL°(I+)I“Xxxx(.’5)"vxxx("’)'d' < c£ A(s)ds,

oy e e @ pu e




for all t in [0,T]. By (5.1) and the above estimates, it may now be concluded that
t 2 2
< . .
g g.(uv)xxxvxxxxdxd- ol + gta (s)as + gtvxxx(o'.)d'l (5.9)

To estimate the rest of the third term on the right-hand side of (5.8), note that

g‘ g.(hk(u))xxxvxxxxdxds

v dxds.
XXXX XXX

-- ft(hk(u))xxx(o,s)vxxx(n,s)ds - f.(hk(u))
0 o o

Equation (5.2), once~differentiated with respect to x, is

() g (30 T} NEN 2N

{[uu
XXXX XXX XX x

u + hj(“)]xx +
Together with the induction hypothesis this relation implies that
2 2 2
. <
[Fam o0 %as < ol + ¢ [Fa%(a)as).
0 0
Therefore, using the induction hypothesis and the estimate above, we may conclude that
t 2 2
<
f f'(hk(u))xxxvxxxxdxds cl(1 + ftA (s)ds + ftvxxx(o,s)da]. (5.10)
o 0 0 0
It remains to estimate the boundary term on the right-hand side of (5.8)., The

equation (5.2), with Jj = k again, implies

- gtvxxt(o,s)vxxx(o,s)ds
- gt"xxt(°"’(ve‘°'°’ + v (0,8) + [uveh, (W] (0,8) - v (0,8)}ds.

Integrating by parts with respect to s yields the relation

gt"xxc‘°"’("e‘°") + v (0,8) + [uv+h, ()] (0,8)}ds
=t
= v, (0,8){v (0,8) + v (0,8) + [uven (w)] (0,80} ¢

- gt"xx‘°"’("ct‘°") + v (0,8) & [uven (W) (9,8))ds.

=54
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K
T From (5.1), (S5.3) and (5.6), and the fact that vtt(o,n) - q(k+2)(.) and v, (0,s) =
~ 9(k+1’(a), it thus appears that for any § > 0 there ia a constant s such that
- gt“xxt‘°")"xxx‘°"’d‘
(5.11)
2 2
< - & - .
cg g“vxxt(o,a)d- + 8%ty gt[1#9(.))vxx(o,s)vxt(o,a)dl
L The estimates (5.8), (5.9), (5.10) and (5.11) and the identity
A
1 Vet = VxSV Yk T Tt
obtained from (5.2), now imply that, for all ¢ > 0, there is a constant s such that :
tor all t ¢ (0,7},
O e 2 2 2
i (AR g [V (0e®) + Vi (0,8) + evi  (0,8)]d8
B Ceplt + [5a%(mas + 52 (0,8)a8] + &2(e)
. § o p XXX b
4
| -zegtn + gle)lv, (0,8)v . (0,8)ds. 1
R By adding this estimate and a suitable multiple of (5.7), and using the induction
* hypotheais again, it appears that for each § > 0 there is a constant cg 8o that, for
all t in [O,T),
- A2ty < cglt + [EaZ(sram) + 862 [5E  (0,a)4s. (5.12)
tey o o XXXt
&
=
by 4
¥ v Inequality (5.12) is not useful until the second integral is bounded. This may be
: i accomplished by virtually the same argument as was used to bound the corresponding term
“
i appearing in the proof of lemma 4.2. Differentiate (5,2), with J = k, twice with respect

to x, multiply the result by zcvxxxt' and then integrate over n’x(o,:). This leads to

the identity

e .

-
g
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; eliv (+,010° - BERIThS I f‘ vxxxt(o,s)ds
2 2 2
Bl = L] 1 - . .
, ety (+,0) v (.08) 4 et{‘vxn(o,s)d- (5.13)
+ 2€gtvxxxx(0,s)vxxxt(O,s)ds - tht f.[nv*hk(u)lxxx xxxtdxds.
1
' Since (5.2) implies that :
4
2 eft !.[“v+hk(“)lxxx xxxt
3 = ft f-[uv*hk(u)] + [uv+h (W) + v+ v  laxds, A
xxx xxxx k xx xx xt
it follows from (5.9), (5.10) and the induction hypothesis that for all ¢t ¢ {0,T}], i
k.
eft I.[uV+hk(“)]xxx Vixxt dxds ;
o i
]‘ <clt + [F1a%(s) + asIn(m)1as + [S2_ (0,s)a8). ;
. 0 g Xxx ; :
0! In consequence of (5.12) and (5.13) we therefore infer the existence of a constant c¢ such . 3 :
- 1
1 that
& a2e) < clt + [5a%a) + a(s)B(s)]as}, (5.14)
! 0
for all t ¢ [0,T].
Next B(t) will he estimated. Let w = u(k*1). By (5.2) w satisfies the equation

't + Yy + [uw+hk+1(u))x + wxxx - e'xxt = 0. (5.15)

Multiply this equation by 2w and integrate over R+!(0,t) to obtain

I'('lt)lz + Elw (.It)'z + ft wz(ol!)ds
X 0 X

- Iw(',O)I2 + elwx(°,0)l2 + ft[1 + g(s))wz(ﬂ,g)dg

+ 2ftw(0,l)[v (0,s) - Cw (O,s)]ds - ft f.(u w 4+ 2wlh

(u)]x}dxds.
0 0 0

k+1

Lzl o

The induction hypothesis therefore implies that, for all & > 0, there is a constant

such that
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Iw(',t)l2 + ely (‘,t)l2 + ft wz(o,g)d.
x 0o X
(5.16)

< cglt + £taz(s)dsl + & é‘[wxx(o,a) - eth(O,s)lzds,

for all t € [0,T]. To complete the satisfactory estimation of B(t), multiply (5.15) by

2(€th - uw - wxx) and integrate over n*X(o,t). This ylelds

(1+€)lwx(-'t)|2 - g’wz(x,c)u(x,t)ax + gt("i‘o"’ + Lw, (0,8) - Eth(o,s)lz}ds

- (et (4,00 1% - P 0reiax + [Frevico,e - g2(8)w2(0,8)] a8
0 o (5.17)

- zgtwt(o,s)wx(o,s)ds - zgtq(s)w(o,s)lwxx(o,s) - ew  (0,8)]ds

2
+ gt £°{zuuwx - ugwt 420 ()] (e ¢+ uw - e ) baxds.

Integration by parts implies that

[E T, (0] v ax = = [ () (0,80 (0,8)as = [ [in . ()] w axa
o o k1 0 W 0 ket 0 0 80w 10,8 P ket 1 L8 o W OXC8,

and that

t tad s=t
eg gathk+1(u)]xthdxds - eg [hy, (W] (x, 80w (x,8)ax|

-eft I'[hk+1(u)1xtuxdxds.
o 0
Hence, it follows from the induction hypothesis that for ail t ¢ [0,T],

g‘ g.[hk+1(u)]x(wxx +uw - cw )axds

<t o,001? s clt + [21p%(a) + AlmIBImNIas + [* wi(0,00a8).
0 0

Therefore, if (5.17) is added to a suitable multiple of (5.16), it follows that

sz(c) <clr + I‘[az(-) + A(s)B(s))ds} (5.18)
0

for all te [0,T)] and all € in (0,€2}. Here, without loss of generality, ez has

heen presumed to be strictly less than 1,
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From (5.14), (5.18) and Gronwall's lemma it now follows that there is a constant ¢
such that
A(t), B(t) € ¢

for all t € [0,T]. This completes the induction argument and hence the proof of lemma 5.1.

The bounds established in lemma 5.1 are just what will be needed in section 6, except
that, so far as is known now, not all the arguments of the constant b1 are independent of
€. To attain the goal for this section, it will suffice to give conditions on the data
£ and g which imply that lu(j)(',o)'4 and lu(jﬂ)(',o)'ﬂ 0 € §J € x, are bounded,
independently of € sufficiently small, This amounts to extending lemma 4.5,

We have not succeeded in giving an absolutely straightforward generalization of lemma
4.5 to the case j > 0. However, by modifying the data, in an €-dependent way, a result
is obtained which is sufficient for our purposes in the next section. Before stating this
lemma, some convenient notation is introduced.

Let w(o)(x) = £(x), and for each integer 3 > 1 define functions pl(3) inductively
by the recurrence,

O L3 L o) % (B)et¥p371), 4, (5.19)
x XXX i x

i=0

Also, for non~-negative integers j, let
g = gy,

Here is the result alluded to above.

LEMMA 5.2. Let f ¢ H (R') and g ¢ H (0,T) be given, with £(0) = g(0). Let
k 2> 1 be a given integer and suppose additionally that
g0 = ¢y, for 3= 1,2,000 k.
Then there exists a family (c_yt.:}‘,’“:‘1 in H'(D,T) such that

(i) 9. (0} = g(0) and limlg, - gl
€*0

ke1,0 = 00
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1 1 (i1) there exists a constant bz, depending continuously on '!l3k+1' such that %
' . < '?
R '“E ( 'o)l3‘k-j)*‘ bz ‘
for 0 € § <k and all € € (0,1)], where u, denotes the solution of (4.1) with initial ;
data f and boundary data g -
¢ Proof. First, two sequences of functions ﬁp‘j)) ana {w'3} are
. ~Xool. ’ € “1€¢4¢x € T1<3¢<k
: introduced. These will be used momentarily to define the modified boundary data ge(t).
i If 3j is an integer in the range ([0,k], let V(j) = [ 215511 ] and define wéj) and
. wéj) on R' by w;°) = ¢£°) = £ and, recursively for j > 0,
(9) (3=1) (3-1) v T (1)) e |
4 (Pe = -{(we )x + (we )xxx + /2 A i (Ue He )X]' (5.20) ‘
and
(3 V. "&3’ 1,224 () (3)
wid) o exp(-xse 2 (320 + [ux b1 (Brak. (5.21)
i=0 0
Here, as in the proof of lemma 4.5,
X -, 9 1/2 1/2
: M (x,8) = --;;-[exp(-lx-il/t ) - exp(-(x+§)/€ “2))
.‘ 2¢
Te and
) ~ 1 1
' M(x,8) = ——1172— lexp(~1x-E1/€ 2} + exp(=(x+E)/e 2)]. 4
2¢ -
’ ; Note that wéj) has been determined as the solution of the boundary-value problem
e‘g; v - CVxx = ¢(ej)'
g
ﬁ with (5.22)
1R v(0) = x.‘:” and  lim v(x) = 0, {
“; x4 ;
g where
X v(3) :
: ELIR SR TR
1 Ae Lo € (3x $eo1(0Y,




By differentiating (5.21) the following identities are obtained, for all integers

r?1,

: %y k
@2 () = exptowze 20 2 20 a0 - ALY
. i=0

(5.23a)

+ g"i’e(x,ma:’”{”)(naa
7 and

‘ (325wt () = exp-x/e V26 Tl - T 1024 130y 0y ‘
§ =0 (5.23b)
+ g' Hc(x,E)(airvéj))(E)dE.

'-i Hence, there is a constant ¢, independent of wéj), wf__j) and €, such that

e I3 kg4 1 (x-9)+1" (5.24)

N < clw(j, {
lor 0 € 3§ €k, Using (S.20), (5.24) and a simple inductive argqument, it follows that

, there is a constant l:a2 = bz(.ﬂﬁlkﬂ) such that

* S} $H
' l'e l:!(k-;nn ' ”e '3(k-j)+1 ‘bz' (5.25) ;
!
J
-4 independently of € in (0,1] and 3 in [0,k]. |
f'!,,i For each € ¢ (0,1] define modified boundary data gc(t) by :
. " ;
1
; g(t) = gle) + Z ;— VLIS LTIV 3
4
4 Observe that g_(0) = g(0). Also, since g‘3)(0) = #3)(0) by assumption ]
' € ' ' ption, 1
(N S }) k
' 3¢ (0 = A, (5.26)
b

for 1 € 3§ ¢k,
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Now let u. denote the solution of (4.1) with initial data € and boundary data
: J) It follows inductively from (5.20), (5.22) and (5,26) that uéj)(',O) = wéj) for
0 € J €k, and hence the desired bounds on u;j)(°,0) follows from (5.25).

To complete the proof it is only required to check that

lim |qe - g}

= 0.
€40 k+1,T

Because of the definition of g, this is equivalent to showing that

um A - Doy -0,

et0
for 0 € 4< k. Referring to the definition of Aéj) below (5.22), and keeping in mind the
bounds in (5.25) and the simple inequality (2.5), we see that

N _ N
A v (0) + O(F),

as € + 0, for 0 € j € k., More precisely,

(3 _ 4D (3
e o (OV] S cely Tl L yyay € CPpE. (5.27)

Hence it is enough to show that

lim Ing)

€40

©0) - ¢y} =0,

for 0 € 4 € k. This latter relation will be proved by establishing that the estimate

“L” EER Va

< c€ R (5.28)
- aw
wS(k 1), (R*)
holds for 0 € { € k, where the constant ¢ = C('f'3k+1)'
The inequality (5.28) is proved by inductionon i ., For i =0 and 1 =1,

(S5.28) follows since wLO) - JO) = f and ¢é1) = w(‘). Assume (5.28) holds for 1 € j,

where 1 € j < ks In order to establish the result for i = j + 1, note first that the

definitions (5.19) and (5.20) imply that

(§+1) Jj*1) (1) (1)
1y - ' < cl{ sup Iw -9t }
c Brmg= e e B, e TSV B
where ¢ = c(lf|3k¢‘). Since 1

(1) (1) V4

1y -¢' N < ce’d
€ w3(k-1),‘(‘+) ’
-61-
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for 0 €1 €3j, by the induction hypothesis, (5.28) will follow if it can be demonstrated

that, for 0 € i ¢ 3§,

(1) (1) 7
Iy -w't <ce ‘4, (5.29)
€ € w3(k-i)o".*>
where again ¢ = C('!'k+|)' The fact that wii) solves (5.22) means that
i i 1
HL )(x) - ¢ﬁ )(x) = exp(-x/€ 72 )(Aéi) - ¢£1)(0)1 + eg"ue(x,t)aiwéi)(E)de.

Differentiating this relation with respect to x, in the same way that (5.21) was

differentiated to yield (5.23a,b), and using (5.27), we readily obtain the estimate,

(1) (1) (1)
] - 1 < ] ]
Ye Ye 3(k-1)-1 " ¥ 3(k-i)s1”
where the constant c¢ 1is independent of wg‘), w;i) and €, The bounds expressed in
(5.25) thus imply that

(1) (i)

] - [} € c€ .

Ye T ¥ T3(k-1)-1 " % (5:30)
where ¢ = c"f'3k¢1)' Also implied by (5.25), and the triangle inequality, is the
estimate

(1) (1)

[ ] - [} < .

We $e 3(k=1)+1 c, {5.31)
where ¢ = c(lfl3k+1). Standard results in the interpolation-theory of Banach spaces now
come to our rescue (cf (2.5) and ({19, chapter 1])., Thus, if h denotes véi’ - wéi),
then 1 1

/2 /;
fnt < i ht ‘2

w3(k—i),’(n+) 3(k-1) I(k=-1)+1

Y/ 3/4
< cinl_ ‘4 thi

cthly-1)-1 "M a(kei)ar
1
¢ c¢€ /4 ¢
where c = c(|f|3k+1). This completes the induction argument in favor of (5.28), and thus

finishes the proof of the lemma.
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The outcome of lemmas 5.1 and 5.2 is conveniently orllected in the following
. theorem. This is, in effect, a higher-order analog of theorem 4,6. 1In the statement of
the theorem, 82 is the same positive winstant that already appeared in theorem 4.6,
L]
THEOREM 5.3. let T > 0 and a positive integer X be given. Let f ¢ H (!+) and §
. . i
: g € H (0,T) and suppose that q(j)(O) = v(j)(O), for 0 € j € k, where the |
‘ functions ¢(j) are related to f as in (5.19). Then there exists a family {ge}oa“
2 .
L] ;
i in H (0,T) such that y
; (1) ge(o) = g(0), uml-gc - g|k+1,T = 0, and
e+
i
) - '
) (ii) there exists a constant b3 b3( f'3k+1"glk+1,r)' depending ocontinuously ;
on its arguments, such that %
. O e en? 4 en®a 37 2 b 3 (eLe0? + SE(0% 7 (0,802 ‘
- 3 x 1 0 x ’
i
%, + 3209 (0,017 + 13 0P 0,007 + 122D 10,0017 < b,
L]
’ (3-1) (3-1)
D holds for 1 € 3€ k and all € in (0,82}. Here, u (x,t) = at uc(x,t) and ue i
denotes the solution of (4.1) with initial data f and boundary data 9o
- 1
-
EX
e,
N .d
“ 4
« y

-
-

H
-,
:* |
2‘
5
t
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6. EXISTENCE AND UNIQUENESS OF SOLUTIONS

The major undertaking of this paper is to prove existence of smooth solutions of the
quarter-plane problem for the X4V equation. Using the theory developed in sections 3, 4
and 5, this task hecomes comparatively simple. Recall that a function u = u(x,t) is
sought such that
u, + u + ua + U ™ a, for x,t > 0, {(6.1a)

t XX

subject to the auxiliary conditions,

u(x,0) = £(x), for x 2 0,
(6,1b)
u(0,t) = g(t), for t 20,
where f and g are given functions.
The issue of unigueness of solutions of thig initial- and boundary-value problem is
especially straightforward to settle. As the uniqueness of solutions of (6.1) is useful
later, it is established first.

THEOREM 6.1, Let T > 0 and s > . Then, corresponding to given auxiliary data

MW

o
f and g, there is at most one solution of (6.1) in the function class L (O,T;Hs(l+)).

Remarks. As usual in this paper, we mean, at the outset, by the word solution a
distributional solution of (6.1a) for which the auxiliary conditions (6.1b) can be given a
well-defined sense. Of course if u s a distributional solution of (6.1a) which is
additionaliy known to lie in a class of smooth functions, it will follow that u is a
classical solution of the differential equation. This point will be ampiified later in

this section.

® +

Proof. Suppose that u,v ¢ L (O,Tyﬂa(n }) arve both solutions of (6.1) corresponding
to the same data € and gq. The H®(R')~norm of u and v {is thus essentially bounded
on ([0,Tj., In particular, for almogt every t in [0,T}, u(°,t), v(°*,t) ¢ “s(n¢)_

Invoking the Sobolev embedding results (cf. [19, chapter 1}), it may therefore be supposed
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that, for almost every t in [0,T), u{°,t), ux(',t), v(*,t) and vx(',t) are bounded
and uniformly continuous functions on i+. Moreover, u, Uyr Vv and v, are easentially
bounded on i*xlo,m). From this it follows straightforwardly that both u and v
converge, in L“(O,T), in the limit as x ¥ 0. Thus the boundary value in (6.1b) is taken
on meaningfully.

Let w=u-v and X = VQ(u+v). Then w is a distributional solution of the linear
variable-coefficient differential equation
w w4 (xw)x +w =0, in R+*(0,T), (6.2a)

t XXX

which satisfies the auxiliary conditions

wi(x,0) = 0, for x ¢ R+,
(6.2b)

w(0,t) = 0, for t in [0,T}.
The boundary condition in (6.2b) holds at least in L“(O,T), whereas it will appear
presently that the initial condition is valid at least in the sense that [Iw(°,t)! + 0, as
t ¥+ 0.

Since Hq(n*) is linearly and continuously embedded in Hs(l*), for q > s, we may,
without loss of generality, suppose that s < 3 and let r = 3 - g. Note that 0 < r <
3/2. Note also that w, and (xw)  lie in L0, 7u% ' (R"))  and that w . 1ies in

L-(D,T)H-r(l*))- From (6.2a) it is thus apparent that w, lies in L-(O,Trﬂ-r(l+)).

The spaces H;(R*) and “-r(‘+) are viewed as being in duality in the usual
manner. The pairing between them is denoted by sharp brackets < , >, (For a detailed
exposition of these apaces, and the duality between them, the reader ie urged to consult
the first two chapters of Lions and Magenes book [19).) Note especially that since, for
almost every t in [0,T}, w e Hs(“+) and w(N,t) = 0, it follows that w ¢ H;(l+),
for almost every ¢t in [0,T]l. Thus w ¢ LQ(O,T;Hs(R*)nH;(l+)). For this, it is crucial
that r < 3/2 of course, Otherwise a second boundary condition wx(o,t) = 0 would be

implied by membership in H;(R*).
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In this situation, it is a standard result (cf. {18, p. 71]) that w ¢ C(0,TiL3(R%)),

and that

4 2

x Tw(e,t)1” = wow . (6.3)
Thus, in particular, the initial value in (6.1b) or (6.2b) is taken on meaningfully. The
right-hand side of (6.3) lies in L‘(O,T). Hence |w(',t)|2 is absolutely continuous, and
upon integrating (6.3) over [0,t], using the equation (6.2a) and the zero initial

condition in (6.2b), there appears

. 2--
tw(*,t)) £t<w,wx + ), +w At (6.4)

Since Wi and (xw)x are continuous square-integrable functions, for almost every ¢t,

and w(0,t) = 0, it is straightforward that

<w,wx> - fa w(x.t)wx(x,t)dx = 0,

0
and that
<, o > = 7 we,t) xix, i) dx
4]
=% f-wz(x,t)x (x,t)dx
0 X
< Iy 1 u(e, )12
xx o 4 ’
L (R x(0,T))
< Mlw( .lt)'zl
where

M =1, lutvl .
L7 0,18 (RY)

In the last step, the fact that s > 3/2 was vital. Finally, we claim that
<w,wxxx> >0, for almost every t in {0,T}. Fix t and let h(*) = w(°*,t). Then

s _+ r, + ~ » 4+
h e H (R )nuo(l ) Let h be a function in H (R ), say, such that

g h]
2ho) = adnio),  for 0 < 3ca-Tp.
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Then h ~-h ¢ H:(R+). Hence there is a seqguence [¢n}: in (&%) such that Wn *he-h

~ ]
in the Hs(n*)-norm. as n * ®, Let hn - Wn + h. The sequence (hn}1 has the following

properties:
o 4
1) hn € H(R) and hn(O) = 0, for all n, and

1) h *h in % r'), as n o+ =,

+

33h in W 5(R') ana hn *h in H;(n+), as n * %, Hence,

Then a3n e
X n x

3 3
= a -
<h,h < lm <h , xhn> lim | hn(x)axhn(x)dx

XX
n+e n+*e 0

2 2
= - 3 3 - 1 » .
im{ {' NEIL ESLRY rl.m /3 10,0 _(00)° 3 0 ,

Putting together the pieces, there appears
Iu(-,c)lz < Mftlw(',t)lzdt,
0

for t in [0,T]. Gronwall's lemma thus impiies that Jw(°*,t)! 20 on [0,T), whence

w=0 and so u = v, as required.,

Attention is now turned to the existence theory. It is convenient to recall here the
notation introduced in section 5. Namely, if f is a given sufficiently smooth function
defined on i+, then set \F(O) = f,

et xy = - (200 + Y £200 + £ 000,

and inductively, (6.5)

T VW CL R C TIFR VS I CURE R TN
X XXX 1m0 X

Remember that w‘:’)(0) = g‘j)(O), where g(j)(t) = azg(t), as before, is just the jth-

order compatibility condition, implied by the KAV equation (6.1a) for solutions that are

sufficiently smooth at the origin (0,0). Here is the main result.
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N THEOREM 6.2, {At k ha a positive integer, f ¢ H3k”(l+) and g ¢ H‘{ol(l+).
~ Suppose the k + 1 ocompatibility conditions

g0y = v 0y, for 0 <3 <K,

hold, where W(j) is defined above. Then there exists a unique snlution u in
@ + +
L (R xHJk '

+
loc (R')) of (6.1) oorregprnding tn the data ¢ and g. In case k > 1, u

+ o+
defines a classical solutinn, up to the boundary, of (6.1) in the quarter plane R XR .

The proof of this result relies on the theory for the regularized problem developed in

sections 3, 4, and culminating in theorem 5.3. To make use of the last-quoted result, the 5
following technical lemma seems essential. ]
B : B
5
LEMMA 6.3. let * and g be as in theorem 6.2. Then there exist sequences ﬁ
! }
L) o 4 L] LS
{e, cn (r) ana {g}, cc(R) such that
. :
1) g M) =e0),  for 0 <3<k, ana 3
-
: +
£, f in 'Y,
ii) ]
- k+1 _+
+ g in H (R ).
gN loc 4

Here w;j) is as defined in (6.5) with f, replacing f and 91:” - 3zgu.

-3 %

o = 4 @ ® 4
Proof. Let {f.} < H (R) and {11“)1 c C (m') satisfy condition (ii) in the

N1
; statement of the lemma, relative to f and g, respectively. Define
: ] 0 (3
o B = ¥ - < <
_ ‘j "N (0) \o“ (0), for 0 3 k, :
. (), 4. )
N where n Bt.\q 1d v is given as in (6.5)., Then set

gelt) = hylt) = py(t),

where
k 3
N t 3
P (t) = a, —. A
N 4=0 3 3t
-68-
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By construction, for 0 € j € k,
~ () ($) gy _ N (D
gy (0) = hy"(0) ay = ¥y (0).
® 4 ket 4
Moreover, ay € C (R ), for each N. It remains to verify that 9y + g in dloc(n Yo
This will be true if and only if B * 0 in n’;:;(n*). But, for 0 € i< k,
; lim 2\ = 1im zh}(‘j)(o) - w;”(on =0,
N+ N
q since f and g satisfy k+1 compatibility conditions. Let T > 0 be given. Then :
k !
k- N 1 3 !
‘ ip ! < 1 layl 4 11 .
: 1
Nkt lo,my gm0 ) 3 #*0,m
:j k
< 1 mlall,
i=0
where the constants Mj depend only on j and T. Since a: + 0, as N * +», for
) each 3j, it follows that
. Ip 1 +0
! ) ’
N Hk*T(O,T)

as N * +®, Since T > 0 was arbitrary, the lemma is established.

The next step in the proof of theorem 6.2 is to establish that solutions of (6.1)

exist in case f and g happen to be infinitely smooth.

PROPOSITION 6.4, Let there be given a positive number T and a positive integer k.

@ 4 o
et £ ¢H (R) and g €¢H (0,T) satiasfy k+1 compatibility conditions,

g'30) = ¢!'3(0), for 0 <4<k

3k+1

» +
Then there exists a solution u of (6.1) in L (0,T;H (R )) corresponding to the

data € and g. Moreover, there exists a constant

¢

of

, : b= bilel,

-

1"9|k+1,'!')

such that

=u(j'"('.t>l3 + lu(j)(',t)l., C b, (6.6)
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for 1 < 4 €%k, where u(j) - 32u. The constant b depends continuously on its

arguments.

Proof. The proposition follows from theorem 5.3, More precisely, theorem 5.3
«
provides the following. There is a §>0 and a family {qe}o<e<5 cH (0,T) such that
ge(O) = £(0), and

- . ¢
lg¢ = alyyq,p * 00 as € +o.

Let u be the solution of the regularized initial- and boundary-value problem (4.1},

corresponding to the data f and 9o Then there is a constant b = b(lfl3k+1,

|g|k+1,T) depending continuously on its arguments, but independent of € in (0,81,

such that

(3-1,, 2 (3=, 2 (3, 2
fu ( .c)l3 + eluxxxx (o, )07 + a7 .c)l,

(6.7)

s g‘{(uii;l’(o.sn’ s w3 0,7 ¢ w0,a1? + Y 0,01%0as < b,

for 0 € 4§ €k, (In (6.7), the subscript € has been suppressed when writing “e') And,
from corollary 3.9,

ai

+
Ve € c(o, T H (R)),

for all non-negative integers i and@ m. Thus

(0du. ) ccs 18 bounded in L7(0,miH’ ('),
for 0 € §<k, and
L
(3:“e}o<c<5 is bounded in L (0,TiH (K )).

«
If H 1is any Hilbert space, then L (0,T:H) 1is the dual of L1(0,T'H). (Here, H is
L]
jdentified with its dual space.) 1In consequence of this fact, the unit ball in 1t (0,TiH)
is compact, for the weak-star topology induced by L‘(O,T,H). Hence, by taking a sequence

from (0,5] converging to 0, and passing progressively to further subsequences, we deduce
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o
the existence of a sequence (en}i, with € + 0 such that if

un(x,t:) - “E (x,t), n=1,2,3,°°°,
n

then there are functions u and Uj in L.(O,Tyﬂa(l’)) ¢+ 0 < 3 <k, and a function

Ad 1,_+
Uy in L (0,T:H (R )), such that

o
u *u weak-star in L (0,THO(R)), )

33y + U, weak-star in L (0,TsH(R))
n T Yy ‘ ’ B (6.8)

for 0 ¢ 3 < k, and )
1

k - 1 _+
3 »> -
u U‘ weak-star in L (0,TsH (R)), ]

o
as n * +®, Since u, + u weak-star in L (O,T;Hs(l+)), certainly u *u in
D'(O,T;Ha(!*)). Hence aiun > Bgu. for all j, at least in the distributional sense.
Because of (6.8), we may therefore identify Uj with 32u, for 0 ¢ 3 € X,
a
v 3 @
Note also that if Vu = ( x“n'at“n)' then { “n}1 comprises a bounded sequence in
d 1,.+ ® 1,.+ 1, ot +
L (0,T:H (R ))XL (0,TjH (R )). Since H (R') < C(R'), this means that each component of
) » 4 )

{Vun}1 is a sequence uniformly bounded in L (R x(0,T)). In consequence, {un}1 forms

an equicontinuous sequence, when restricted to any compact subset of §+![0,Tl. Hence for
o

any M > 0, {“n}1 is precompact in C({0,M}%[0,T]), by the Ascoli-Arzela lemma., So by
passing to still further subsequences, and finishing off with a Cantor diagonalization, it

may be presumed that
ag n * +*,
u *u, uniformly on compact
subsets of i+x(0,T}.
{More precisely, this argument leads to the conclusion that un + v, uniformly on compact
subsets of R *X[0,T], as n * +®, This in turn implies that u *v in D (rx(0,1))
and thus leads to the identification v = u.) Exactly the same arqument holds good for

32un, provided j < k. Thus, for 0 € j < k,

N »

o
(

T, o Yy
AL CIRIRE T T RPRWT LN KXY
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as n * +%,

3:un * 3:u uniformly on compact (6.9)
subsets of i+X[0,T].

By a different argqument, which makes use of the fact that H‘(O,H) is8 compactly embedded

in Ln(o,n) for any M > 0, (cf. Lemma 7 in [8]) it may also be presumed that

as n * +%°, almost

., - (6.10)
everywhere in R X[0,T].

k X
Jouy * 3

By passing to a further subsequence, if necessary, it may be supposed as well that, as

n’q..'
udu *w weak=-star in L~(0,T)H2(l+))
nxn 4
» 2 +
3xun * v weak-star in L (0,T)H (R )),
and -
3:un sy weak-star in L (0,TiL3(m’)).

Because of (6.9), “n *+u and u: > uz in 0'(R+X(O,T)). Hence the identifications

w = 3xu2, v = ax“' V= 3iu follow. Moreover, ataiu is bounded in L.(O,T;H-'(l+)),

n
80 enata:“n + 0 strongly in this space, as n * +* ,
The reader will appreciate now that there is in hand enough information to pass to the
limit n * +* in the regqularized equations and conclude that, at least in the distribu-
tional sense, u satisfies the KdV equation,
v, +u +uu +u, =0,

in R’X(O,T). Moreover, as u.(x,0) 2 f(x) and u (0,t) = g (t) for 0 <€ < §, it
follows from (6.9), tor example, that

u(x,0) = £(x), for x € R+,
and

u{0,t) = g(t) for te¢ [0,T).
Thus u does indeed provide a solution of (6.1) on i+‘(0,T]. Moreover, by the lower-

semicontinuity of the norm, relative to weak-star convergence, (6.7) implies that

|u(j)(',t)|3 < b,

for 0 € j ¢ k, and
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n\,""(-,gn‘ <b,

- el 3.
where b = b(If 3k¢1"q|k+1,T) is the congtant obtained earlier from theorem 5.3

- 1. 4 o 2, 4+
Notice that, if k = 1, then u €L (0,T4H (R)) and u,, uu, € L (0, T;H (R )).
o
Hence, from the differential equation, U €L (O,T:H1(l+)). whence
u € L-(O,T;H4(l+)). If k > 1, this type of simple argument may be continued

inductively. The outcome is that

azu e o, Iy, (6.11)

for 0 s j s k.
Finally, (6.11) and standard interpolation results ((19, Ch. 1, Theorem 3.1]) yield

the following additional smoothness results:

edle ¥
32\; ¢ cto,mu 7" 72 gty (6.12)

for 0 € j < ke

In particular, if k > 1, certainly u € C(O,Tyﬂ4(l+)). Therefore, UL, U, uu, and

Uk 211 lie in C(O,T)H'(lf)). As this latter space is embedded in Cb(i+*{0,T]), it
follows that, after possible modification on a set of measure zero, all the derivatives in

the differential equation are continuous, and bounded, functions. Consequently, if k > 1,

u is a classical solution of the quarter-plane problem for KdV.

The proof of the proposition is now completed.

Remark. Because the solution u obtained in proposition 6.4 lies within the realm of

the uniqueness theorem 6.1, the entire family {ue}0<e<6 is inferred to converge to u, in

the various senses appearing in the proof. This is because we actually prove that any

-
sequence (Gn}1 in (0,8), with cn * 0, as n * +®, has a subsequence such that the

corresponding functions (un) converge to a solution of (6.1), which by uniqueness must

be u.
The last proposition gives very nearly the result stated in theorem 6.2, The only

essential difference is that £ and g are assumed to he infinitely differentiable.

Using lemma 6.3, this added assumption may be shown to be unnecessary.
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Proof (of theorem 6.2). Suppose now that f ¢ H3k+1(l*)) and g € H
fixed, and that f and g satisfy the first x + 1 compatibility conditions, as in the
statement of the theorem. Fix T > 0. By lemma 6.3, there exist sequences {fn}:

H(R') and {gh): < c (x') such that
gt i W@,

and (6.13)
%Y *gqg in Hk+‘(0,T),

ag N * +* ., And, for each W > 0, !N and - V) satisfy the same k+1 compatibility

conditions satisfied by £ and g. The last proposition thus applies, and it is concluded

that there is a solution uy of (6.1), on i+*[O,T], corresponding to the data fy

o -
and gy, Mereover, Oy < L (0,mu’ @'y, for 0 <3<k, anaie
by = b1 9 e, o)
then for 0 € j < k,
g <b,
o
ey w,m@y N
and
x
13 [ ] <Db ..
o
o @y

Because of (6.13) and the fact that b is bounded as its arguments vary over a bounded

set, there is a constant B, independent of N, such that

1dan < B,
e’y L o,y
for 0 € 3 ¢ k, and (6.14)
x
' < B.
oy @ B

L 0, @'y

In consequence of the bounds expressed in (6.14), the arguments of proposition 6.4 may
be repeated without essential change (the extra smoothness available during the proof of
the proposition was not used, nor was the regularizing term -E“xxt)' It is concluded
therefore that {“N): converges to a function Uq, 82Y, in the various ways already

detailed in the proof of proposition 6.4. As before, u, provides a solution of (6.1)

corresponding to the data f and g, on i+l[0,Tl.
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The above argument applies for any fixed T > 0., Define a function U on R XR by,

Ulx,t) = uplx,t),
provided that t < T. This is well-defined because of the uniqueness result. It is clear
that U provides the solution whose existence was contemplated in the statement of theorem
6.2, The fact that U is a classical solution of the problem (6.1), if k > 1, follows

exactly as in the proof of proposition 6.4. The theorem is thus established.

It is perhaps worth comment that theorem 6.2 also holds if k = 0. This result
subsists on the e=-independent H‘(l*)-bound established in corollary 3.6. The proof of
existence of these weaker solutions, while a little more delicate than the proof of theorem
6.2, fits more or less directly into the framework exposed in the proof of proposition
6.3, (The extra ingredients may be found, for example, in (8, appendix A].) For this

reagson, we content ourselves with a statement of this further consequence.

THEOREM 6.5. Let £ ¢ H'(R') and g ¢ H;oc(l+), and suppose £(0) = g(0). Then
o
there exists a solution u in Lloc(lftﬁi(l+)) of problem (6.1) corresponding to the

data f and g.

Remarks. By a solution we mean as usual a solution in the sense of distributions. 1In

this case the uniqueness result does not apply.

= - +
Note that, for any T > 0, u €L (0, TH 2(! }), from the equation. Hence ue
1
C(0,TsH” %) (l+)) (cf. again [19, Chapter 1]), so the initial-value is taken on in a weak,
L] 1+ L +
but meaningful way. Note as well that L (0,T;H (R)) ¢ L (O,Tycb(n M. Hence for almost
every t in (0,T}, u(x,t) 1is continuous in x at x =0 . Thus the boundary-values

are also obtained in a meaningful way.
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7. CONCLUSION

The quarter-plane problem (1.3) is argued to be a natural configuration in which to
use the KAV equation for the prediction of wave propagation in a uniform channel. The
general idea behind the use of this form of initial~ and boundary-value problem for testing
the appurtenance of the KAV equation may be appreciated by reference to figure 1. With the
liquid initially at rest (f = 0), a wavemaker located at one end of the channel is
activated. The passage of the waves down the channel is recorded by probes, the recording
nearest the wavemaker being construed as the boundary data g(t). Note that if the waves
are in the regime to which, formally, X4V applies, then they are expected to be smooth,
and so g will lie in D(0,T), for some T > 0. 1In consequence, the data so determined
will satisfy the compatibility conditions, expressed for example below (6.5), to all
orders. Hence the theory developed herein is applicable.

Our theory demonstrates that problem (1.3) has unigque smooth solutions, corresponding
to such smooth and compatible data. This is a step in the direction of a satisfactory
mathematical analysis of the situation envisaged in figure 1. Another important step,
which has not been treated here, is a result of continuous dependence of the solutions on
variations of the data. Also, in considering comparisons of the model's predictions with
laboratory-scale experiments, some compensation for dissipative effects must be included
(cf. [10}). Less important, but still of some mathematical interest, is a possible
improvement of the regularity theory to bring this aspect into line with the theory for the
pure initial-value problem (cf. [8] or [16)). We have shown that if £ ¢ u3X*'(m*) ana

g € ﬂtZl(l‘) satisfy the appropriate compatibility conditions at (x,t) = (0,0), then the
quarter-plane problem has a solution in L;;c(l+,H3k+‘(l+)). Whereas, we confidently
axpect the solutions to lie in c(l+yH3k+1(l*)). In fact, this latter point seems to be
related to a sharp version of continuous dependence of solutions on the data.

It deserves emphasis that a satisfactory numerical scheme for the configuration in
view here is essentlal to effect any quantitative comparisons of laboratory data with
predictions of the model. Especial care must be exercised here. First, control of the

high-frequency end of the Fourier spectrum must be assured. Otherwise an untenable error

-76-




!

-

e

may be created near x = 0 , due to the large negative phase and group velocity associated

to such components (cf. (4, §2]). Secondly, the integration will in fact take place on a
bounded spatial domain, forcing the imposition of additional boundary conditions., This in
turn will lead to consideration of an initial~ and two-point-boundary-value problem for the
K&V equation, and to consideration of the relation of such a problem to the situation
studied here. The Aifficulties seem numerous enough to warrant insisting on a scheme
having rigorously derived error bounds. Thus far, such schemes seem to be avajilable only
for the periodic initial-value problem. (cf. (1), (2],{29] and {30]).

Pinally, it is worth remarking that the methods embodied in this paper might yield a
comparison theorem between the gquarter-plane problem (1.3) for X& and the analogous
quarter-plane probem for (1.4) studied in [5), and used in the comparisons with
experimental data reported in [10]. Such a program of comparison of model equations has
been carried out for the associated pure initial-value problems in [11], using the general
line pursued herein. Thus there is some cause for hope that a similar result is obtained

in the present oontext.
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